コード例 #1
0
ファイル: bert_model.py プロジェクト: ifeel36/python-dlpy
    def set_optimizer_parameters(self,
                                 beta1=0.9,
                                 beta2=0.999,
                                 learning_rate=3e-5,
                                 max_epochs=3,
                                 mini_batch_size=1):
        '''
        Sets optimizer parameters according to defaults in original BERT paper.

        Parameters
        ----------
        beta1 : double, optional
            Specifies the exponential decay rate for the first moment in
            the Adam learning algorithm.
            Default: 0.9
        beta2 : double, optional
            Specifies the exponential decay rate for the second moment in
            the Adam learning algorithm.
            Default: 0.999
        learning_rate : double, optional
            Specifies the learning rate.
            Default: 3e-5
        max_epochs : int, optional
            Specifies the maximum number of epochs.
            Default: 3
        mini_batch_size : int, optional
            Specifies the number of observations per thread in a mini-batch.
            Default: 1
            
        '''

        # the optimizer dictionary is set according to the parameter choices recommended
        # for fine-tuning in the original BERT paper
        if self._verbose:
            log_level = 3
        else:
            log_level = 0

        # determine what to train
        if self._freeze_base:
            freeze_layers_to = self._rnn_layer
            freeze_layers = None
        else:
            freeze_layers_to = None
            freeze_layers = [self._rnn_layer]

        # set optimizer parameters similar to settings in original BERT paper
        self._optimizer = Optimizer(algorithm=AdamSolver(
            beta1=beta1,
            beta2=beta2,
            learning_rate=learning_rate,
            gamma=0.0,
            power=0.0),
                                    mini_batch_size=mini_batch_size,
                                    seed=self.seed,
                                    max_epochs=max_epochs,
                                    dropout_type='inverted',
                                    log_level=log_level,
                                    freeze_layers_to=freeze_layers_to,
                                    freeze_layers=freeze_layers)
コード例 #2
0
    def test_siamese_fit_1(self):

        if self.server_dir is None:
            unittest.TestCase.skipTest(
                self,
                "DLPY_DATA_DIR_SERVER is not set in the environment variables")

        # test using one data table
        resnet18_model = ResNet18_Caffe(self.s,
                                        width=224,
                                        height=224,
                                        random_crop='RESIZETHENCROP',
                                        random_flip='HV',
                                        random_mutation='random')
        embedding_layer = Dense(n=4)
        model1 = EmbeddingModel.build_embedding_model(
            resnet18_model,
            model_table='test1',
            embedding_model_type='siamese',
            margin=3.0,
            embedding_layer=embedding_layer)
        res1 = model1.print_summary()
        self.assertEqual(
            res1[res1['Layer'].str.contains(
                model1.embedding_layer_name_prefix)].shape[0], 2)

        img_path = self.server_dir + 'DogBreed_small'
        my_images = ImageEmbeddingTable.load_files(
            self.s,
            path=img_path,
            n_samples=64,
            embedding_model_type='siamese')
        solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001,
                                                step_size=20),
                            clip_grad_max=100,
                            clip_grad_min=-100)
        optimizer = Optimizer(algorithm=solver,
                              mini_batch_size=8,
                              log_level=3,
                              max_epochs=2,
                              reg_l2=0.0001)
        gpu = Gpu(devices=1)
        train_res = model1.fit_embedding_model(optimizer=optimizer,
                                               n_threads=1,
                                               gpu=gpu,
                                               path=img_path,
                                               n_samples=64,
                                               max_iter=2,
                                               seed=1234,
                                               record_seed=23435)
        print(train_res)
        score_res = model1.predict(data=my_images,
                                   gpu=gpu,
                                   random_crop='RESIZETHENCROP')
        print(score_res)
コード例 #3
0
    def test_build_gan_model_4(self):

        if self.server_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables")

        discriminator = Sequential(self.s)
        discriminator.add(InputLayer(1, 28, 28))
        discriminator.add(Conv2d(3, 3))
        discriminator.add(Pooling(2))
        discriminator.add(Conv2d(3, 3))
        discriminator.add(Pooling(2))
        discriminator.add(Dense(16))
        discriminator.add(OutputLayer(n=1))

        generator = Sequential(self.s)
        generator.add(InputLayer(1, 100, 1))
        generator.add(Dense(256, act='relu'))
        generator.add(Dense(512, act='relu'))
        generator.add(Dense(1024, act='relu'))
        generator.add(Dense(28 * 28, act='tanh'))
        generator.add(OutputLayer(act='softmax', n=2))

        encoder = Sequential(self.s)
        encoder.add(InputLayer(100, 1, 1))
        encoder.add(Dense(256, act='relu'))
        encoder.add(Dense(512, act='relu'))
        encoder.add(Dense(1024, act='relu'))
        encoder.add(Dense(100, act='tanh'))
        encoder.add(OutputLayer(act='softmax', n=2))

        gan_model = GANModel(generator, discriminator, encoder)

        res = gan_model.models['generator'].print_summary()
        print(res)

        res = gan_model.models['discriminator'].print_summary()
        print(res)

        from dlpy.model import Optimizer, MomentumSolver, AdamSolver
        solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001, step_size=4), clip_grad_max=100,
                            clip_grad_min=-100)
        optimizer = Optimizer(algorithm=solver, mini_batch_size=8, log_level=2, max_epochs=4, reg_l2=0.0001)

        res = gan_model.fit(optimizer, optimizer, self.server_dir + 'mnist_validate',
                            n_samples_generator=32, n_samples_discriminator=32, max_iter=2, n_threads=1,
                            damping_factor=0.5)
        print(res)
コード例 #4
0
ファイル: test_model.py プロジェクト: jlwalke2/python-dlpy
    def test_model_forecast3(self):
        
        import datetime
        try:
            import pandas as pd
        except:
            unittest.TestCase.skipTest(self, "pandas not found in the libraries") 
        import numpy as np
            
        filename1 = os.path.join(os.path.dirname(__file__), 'datasources', 'timeseries_exp1.csv')
        importoptions1 = dict(filetype='delimited', delimiter=',')
        if self.data_dir is None:
            unittest.TestCase.skipTest(self, "DLPY_DATA_DIR is not set in the environment variables")

        self.table3 = TimeseriesTable.from_localfile(self.s, filename1, importoptions=importoptions1)
        self.table3.timeseries_formatting(timeid='datetime',
                                  timeseries=['series', 'covar'],
                                  timeid_informat='ANYDTDTM19.',
                                  timeid_format='DATETIME19.')
        self.table3.timeseries_accumlation(acc_interval='day',
                                           groupby=['id1var', 'id2var'])
        self.table3.prepare_subsequences(seq_len=2,
                                         target='series',
                                         predictor_timeseries=['series', 'covar'],
                                         missing_handling='drop')
        
        valid_start = datetime.date(2015, 1, 4)
        test_start = datetime.date(2015, 1, 7)
        
        traintbl, validtbl, testtbl = self.table3.timeseries_partition(
                validation_start=valid_start, testing_start=test_start)
        
        sascode = '''
        data {};
        set {};
        drop series_lag1;
        run;
        '''.format(validtbl.name, validtbl.name)
        
        self.s.retrieve('dataStep.runCode', _messagelevel='error', code=sascode)
        
        sascode = '''
        data {};
        set {};
        drop series_lag1;
        run;
        '''.format(testtbl.name, testtbl.name)
        
        self.s.retrieve('dataStep.runCode', _messagelevel='error', code=sascode)
        
        model1 = Sequential(self.s, model_table='lstm_rnn')
        model1.add(InputLayer(std='STD'))
        model1.add(Recurrent(rnn_type='LSTM', output_type='encoding', n=15, reversed_=False))
        model1.add(OutputLayer(act='IDENTITY'))
        
        optimizer = Optimizer(algorithm=AdamSolver(learning_rate=0.01), mini_batch_size=32, 
                              seed=1234, max_epochs=10)                    
        seq_spec  = Sequence(**traintbl.sequence_opt)
        result = model1.fit(traintbl, optimizer=optimizer, 
                            sequence=seq_spec, **traintbl.inputs_target)
        
        self.assertTrue(result.severity == 0)
        
        resulttbl1 = model1.forecast(validtbl, horizon=1)
        self.assertTrue(isinstance(resulttbl1, CASTable))
        self.assertTrue(resulttbl1.shape[0]==15)
        
        local_resulttbl1 = resulttbl1.to_frame()
        unique_time = local_resulttbl1.datetime.unique()
        self.assertTrue(len(unique_time)==1)
        self.assertTrue(pd.Timestamp(unique_time[0])==datetime.datetime(2015,1,4))

        resulttbl2 = model1.forecast(validtbl, horizon=3)
        self.assertTrue(isinstance(resulttbl2, CASTable))
        self.assertTrue(resulttbl2.shape[0]==45)
        
        local_resulttbl2 = resulttbl2.to_frame()
        local_resulttbl2.sort_values(by=['id1var', 'id2var', 'datetime'], inplace=True)
        unique_time = local_resulttbl2.datetime.unique()
        self.assertTrue(len(unique_time)==3)
        for i in range(3):
            self.assertTrue(pd.Timestamp(unique_time[i])==datetime.datetime(2015,1,4+i))
        
        series_lag1 = local_resulttbl2.loc[(local_resulttbl2.id1var==1) & (local_resulttbl2.id2var==1), 
                             'series_lag1'].values
                                           
        series_lag2 = local_resulttbl2.loc[(local_resulttbl2.id1var==1) & (local_resulttbl2.id2var==1), 
                             'series_lag2'].values
        
        DL_Pred = local_resulttbl2.loc[(local_resulttbl2.id1var==1) & (local_resulttbl2.id2var==1), 
                             '_DL_Pred_'].values
                                       
        self.assertTrue(np.array_equal(series_lag1[1:3], DL_Pred[0:2]))
        self.assertTrue(series_lag2[2]==DL_Pred[0]) 
        
        with self.assertRaises(RuntimeError):
            resulttbl3 = model1.forecast(testtbl, horizon=3)
コード例 #5
0
    def test_quartet_fit(self):

        if self.server_dir is None:
            unittest.TestCase.skipTest(
                self,
                "DLPY_DATA_DIR_SERVER is not set in the environment variables")

        # test using one data table
        resnet18_model = ResNet18_Caffe(self.s,
                                        width=224,
                                        height=224,
                                        random_crop='RESIZETHENCROP',
                                        random_flip='HV',
                                        random_mutation='random')
        embedding_layer = Dense(n=4)
        model1 = EmbeddingModel.build_embedding_model(
            resnet18_model,
            model_table='test1',
            embedding_model_type='quartet',
            margin=-3.0,
            embedding_layer=embedding_layer)
        res1 = model1.print_summary()
        print(res1)

        img_path = self.server_dir + 'DogBreed_small'
        my_images = ImageEmbeddingTable.load_files(
            self.s,
            path=img_path,
            n_samples=64,
            embedding_model_type='quartet')
        solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001,
                                                step_size=20),
                            clip_grad_max=100,
                            clip_grad_min=-100)
        optimizer = Optimizer(algorithm=solver,
                              mini_batch_size=8,
                              log_level=3,
                              max_epochs=5,
                              reg_l2=0.0001)
        gpu = Gpu(devices=1)
        train_res = model1.fit_embedding_model(data=my_images,
                                               optimizer=optimizer,
                                               n_threads=1,
                                               gpu=gpu,
                                               seed=1234,
                                               record_seed=23435)
        print(train_res)
        score_res = model1.predict(data=my_images,
                                   gpu=gpu,
                                   random_crop='RESIZETHENCROP')
        print(score_res)

        # test deploy as astore
        self.s.loadactionset('astore')
        my_images_test = ImageEmbeddingTable.load_files(
            self.s,
            path=img_path,
            n_samples=5,
            embedding_model_type='quartet',
            resize_width=224,
            resize_height=224)

        # case 1: deploy the full model as astore
        model1.deploy_embedding_model(output_format='astore',
                                      model_type='full',
                                      path=self.local_dir)

        full_astore = os.path.join(self.local_dir,
                                   model1.model_name + '.astore')
        with open(full_astore, mode='rb') as file:
            file_content = file.read()

        store_ = swat.blob(file_content)
        self.s.astore.upload(rstore=dict(name='test1_full', replace=True),
                             store=store_)

        # run with one gpu
        self.s.score(
            rstore=dict(name='test1_full'),
            table=my_images_test,
            nthreads=1,
            # _debug=dict(ranks=0),
            copyvars=['_path_', '_path_1', '_path_2', '_path_3'],
            options=[
                dict(name='usegpu', value='1'),
                dict(name='NDEVICES', value='1'),
                dict(name='DEVICE0', value='0')
            ],
            out=dict(name='astore_score1_full_gpu', replace=True))

        res = self.s.fetch(table='astore_score1_full_gpu')
        print(res)

        # remove the astore file
        os.remove(full_astore)

        # case 2: deploy the branch model as astore
        model1.deploy_embedding_model(output_format='astore',
                                      model_type='branch',
                                      path=self.local_dir)

        br_astore = os.path.join(self.local_dir,
                                 model1.model_name + '_branch.astore')
        with open(br_astore, mode='rb') as file:
            file_content = file.read()

        store_ = swat.blob(file_content)
        self.s.astore.upload(rstore=dict(name='test1_br', replace=True),
                             store=store_)

        # run with one gpu
        self.s.score(
            rstore=dict(name='test1_br'),
            table=my_images_test,
            nthreads=1,
            # _debug=dict(ranks=0),
            copyvars=['_path_'],
            options=[
                dict(name='usegpu', value='1'),
                dict(name='NDEVICES', value='1'),
                dict(name='DEVICE0', value='0')
            ],
            out=dict(name='astore_score1_br_gpu', replace=True))

        res = self.s.fetch(table='astore_score1_br_gpu')
        print(res)

        os.remove(br_astore)