コード例 #1
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations + 1.)]

        t = self.iterations + 1
        lr_t = self.lr / (1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of 1st moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of exponentially weighted infinity norm
            u = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            u_t = K.maximum(self.beta_2 * u, K.abs(g))
            p_t = p - lr_t * m_t / (u_t + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((u, u_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
コード例 #2
0
ファイル: optimizers.py プロジェクト: lxastro/dlx
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations+1.)]

        t = self.iterations + 1
        lr_t = self.lr / (1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of 1st moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of exponentially weighted infinity norm
            u = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            u_t = K.maximum(self.beta_2 * u, K.abs(g))
            p_t = p - lr_t * m_t / (u_t + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((u, u_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
コード例 #3
0
ファイル: objectives.py プロジェクト: lchmo444/dlx
def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs(
        (y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
    return 100. * K.mean(diff, axis=-1)
コード例 #4
0
ファイル: objectives.py プロジェクト: lchmo444/dlx
def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)
コード例 #5
0
ファイル: objectives.py プロジェクト: lxastro/dlx
def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
    return 100. * K.mean(diff, axis=-1)
コード例 #6
0
ファイル: objectives.py プロジェクト: lxastro/dlx
def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)