コード例 #1
0
 def _setup_basic_gtt_task(self, num_targets=1, reward_scale=1.0):
   walker = walkers.Ant()
   text_maze = arenas.padded_room.PaddedRoom(
       room_size=8, num_objects=2, pad_with_walls=True)
   maze_arena = arenas.MazeWithTargets(maze=text_maze)
   targets = []
   for _ in range(num_targets):
     targets.append(
         props.PositionDetector(
             pos=[0, 0, 0.5],
             size=[0.5, 0.5, 0.5],
             inverted=False,
             visible=True))
   test_predicates = [predicates.MoveWalkerToRandomTarget(walker, targets)]
   self._task = predicate_task.PredicateTask(
       walker=walker,
       maze_arena=maze_arena,
       predicates=test_predicates,
       targets=targets,
       randomize_num_predicates=False,
       reward_scale=reward_scale,
       terminating_reward_bonus=2.0,
       )
   random_state = np.random.RandomState(12345)
   self._env = composer.Environment(self._task, random_state=random_state)
   self._walker = walker
   self._targets = targets
コード例 #2
0
 def test_error_too_few_targets(self):
   walker = walkers.Ant()
   num_targets = 5
   text_maze = arenas.padded_room.PaddedRoom(
       room_size=8, num_objects=2, pad_with_walls=True)
   maze_arena = arenas.MazeWithTargets(maze=text_maze)
   targets = []
   for _ in range(num_targets):
     targets.append(
         props.PositionDetector(
             pos=[0, 0, 0.5],
             size=[0.5, 0.5, 0.5],
             inverted=False,
             visible=True))
   test_predicates = [predicates.MoveWalkerToRandomTarget(walker, targets)]
   task = predicate_task.PredicateTask(
       walker=walker,
       maze_arena=maze_arena,
       predicates=test_predicates,
       targets=targets,
       randomize_num_predicates=False,
       reward_scale=1.0,
       terminating_reward_bonus=2.0,
   )
   random_state = np.random.RandomState(12345)
   env = composer.Environment(task, random_state=random_state)
   with self.assertRaisesWithLiteralMatch(
       RuntimeError, "The generated maze does not contain enough target "
       "positions for the requested number of props (0) and targets (5): "
       "got 2."
   ):
     env.reset()
コード例 #3
0
 def test_too_few_predicates_raises_exception(self):
   walker = walkers.Ant()
   num_targets = 1
   text_maze = arenas.padded_room.PaddedRoom(
       room_size=8, num_objects=2, pad_with_walls=True)
   maze_arena = arenas.MazeWithTargets(maze=text_maze)
   targets = []
   for _ in range(num_targets):
     targets.append(
         props.PositionDetector(
             pos=[0, 0, 0.5],
             size=[0.5, 0.5, 0.5],
             inverted=False,
             visible=True))
   test_predicates = []
   with self.assertRaisesWithLiteralMatch(
       ValueError, "Not enough predicates for task."
       " The maximum number of "
       "predicates can be "
       "1 but only 0 predicates provided."):
     predicate_task.PredicateTask(
         walker=walker,
         maze_arena=maze_arena,
         predicates=test_predicates,
         targets=targets,
         randomize_num_predicates=False,
         reward_scale=1.0,
         terminating_reward_bonus=2.0,
         )
コード例 #4
0
    def _build(self,
               size=_DEFAULT_PITCH_SIZE,
               goal_size=None,
               top_camera_distance=_TOP_CAMERA_DISTANCE,
               field_box=False,
               field_box_offset=0.0,
               hoarding_color_scheme_id=0,
               name='pitch'):
        """Construct a pitch with walls and position detectors.

    Args:
      size: a tuple of (length, width) of the pitch.
      goal_size: optional (depth, width, height) indicating the goal size.
        If not specified, the goal size is inferred from pitch size with a fixed
        default ratio.
      top_camera_distance: the distance of the top-down camera to the pitch.
      field_box: adds a "field box" that collides with the ball but not the
        walkers.
      field_box_offset: offset for the fieldbox if used.
      hoarding_color_scheme_id: An integer with value 0, 1, 2, or 3, specifying
        a preset scheme for the hoarding colors.
      name: the name of this arena.
    """
        super(Pitch, self)._build(name=name)
        self._size = size
        self._goal_size = goal_size
        self._top_camera_distance = top_camera_distance
        self._hoarding_color_scheme_id = hoarding_color_scheme_id

        self._top_camera = self._mjcf_root.worldbody.add(
            'camera',
            name='top_down',
            pos=[0, 0, top_camera_distance],
            zaxis=[0, 0, 1],
            fovy=_top_down_cam_fovy(self._size, top_camera_distance))

        # Ensure close up geoms are rendered by egocentric cameras.
        self._mjcf_root.visual.map.znear = 0.0005

        # Add skybox.
        self._mjcf_root.asset.add('texture',
                                  name='skybox',
                                  type='skybox',
                                  builtin='gradient',
                                  rgb1=(.7, .9, .9),
                                  rgb2=(.03, .09, .27),
                                  width=400,
                                  height=400)

        # Add and position corner lights.
        self._corner_lights = [
            self._mjcf_root.worldbody.add('light', cutoff=60) for _ in range(4)
        ]
        _reposition_corner_lights(self._corner_lights, size)

        # Increase shadow resolution, (default is 1024).
        self._mjcf_root.visual.quality.shadowsize = 4096

        # Build groundplane.
        if len(self._size) != 2:
            raise ValueError(
                '`size` should be a sequence of length 2: got {!r}'.format(
                    self._size))
        self._field_texture = self._mjcf_root.asset.add(
            'texture',
            type='2d',
            file=_get_texture('pitch_nologo_l'),
            name='fieldplane')
        self._field_material = self._mjcf_root.asset.add(
            'material', name='fieldplane', texture=self._field_texture)

        self._ground_geom = self._mjcf_root.worldbody.add(
            'geom',
            name='ground',
            type='plane',
            material=self._field_material,
            size=list(self._size) +
            [max(self._size) * _GROUND_GEOM_GRID_RATIO])

        # Build walls.
        self._walls = []
        for wall_pos, wall_xyaxes in _wall_pos_xyaxes(self._size):
            self._walls.append(
                self._mjcf_root.worldbody.add('geom',
                                              type='plane',
                                              rgba=[.1, .1, .1, .8],
                                              pos=wall_pos,
                                              size=[1e-7, 1e-7, 1e-7],
                                              xyaxes=wall_xyaxes))

        # Build goal position detectors.
        # If field_box is enabled, offset goal by 1.0 such that ball reaches the
        # goal position detector before bouncing off the field_box.
        self._fb_offset = field_box_offset if field_box else 0.0
        goal_size = self._get_goal_size()
        self._home_goal = Goal(direction=1,
                               make_net=False,
                               pos=(-self._size[0] + goal_size[0] +
                                    self._fb_offset, 0, goal_size[2]),
                               size=goal_size,
                               rgba=(.2, .2, 1, 0.5),
                               visible=True,
                               name='home_goal')
        self.attach(self._home_goal)

        self._away_goal = Goal(direction=-1,
                               make_net=False,
                               pos=(self._size[0] - goal_size[0] -
                                    self._fb_offset, 0, goal_size[2]),
                               size=goal_size,
                               rgba=(1, .2, .2, 0.5),
                               visible=True,
                               name='away_goal')
        self.attach(self._away_goal)

        # Build inverted field position detectors.
        self._field = props.PositionDetector(
            pos=(0, 0),
            size=(self._size[0] - 2 * goal_size[0],
                  self._size[1] - 2 * goal_size[0]),
            inverted=True,
            visible=False,
            name='field')
        self.attach(self._field)

        # Build field perimeter.
        def _visual_plane():
            return self._mjcf_root.worldbody.add('geom',
                                                 type='plane',
                                                 size=(1, 1, 1),
                                                 rgba=(0.306, 0.682, 0.223, 1),
                                                 contype=0,
                                                 conaffinity=0)

        self._perimeter = [_visual_plane() for _ in range(8)]
        self._update_perimeter()

        # Build field box.
        self._field_box = []
        if field_box:
            for box_pos, box_size in _fieldbox_pos_size(
                (self._field.upper - self._field.lower) / 2.0, goal_size):
                self._field_box.append(
                    self._mjcf_root.worldbody.add('geom',
                                                  type='box',
                                                  rgba=[.3, .3, .3, .0],
                                                  pos=box_pos,
                                                  size=box_size))

        # Build hoarding sites.
        def _box_site():
            return self._mjcf_root.worldbody.add('site',
                                                 type='box',
                                                 size=(1, 1, 1))

        self._hoarding = [_box_site() for _ in range(4 * _NUM_HOARDING)]
        self._update_hoarding()
コード例 #5
0
def _make_predicate_task(n_boxes, n_targets,
                         include_gtt_predicates, include_move_box_predicates,
                         max_num_predicates, control_timestep, time_limit):
  """Auxiliary function to construct different predicates tasks."""
  walker = walkers.Ant()
  skybox = dmlab_assets.SkyBox(style='sky_03')
  wall = dmlab_assets.WallTextures(style='style_03')
  floor = dmlab_assets.FloorTextures(style='style_03')

  # Make room size become bigger once the number of objects become larger.
  num_objects = n_boxes + n_targets
  room_size = max(MIN_ROOM_SIZE, num_objects)
  text_maze = locomotion_arenas.padded_room.PaddedRoom(
      room_size=room_size, num_objects=num_objects, pad_with_walls=True)
  arena = locomotion_arenas.MazeWithTargets(
      maze=text_maze,
      skybox_texture=skybox,
      wall_textures=wall,
      floor_textures=floor)

  boxes = []
  for _ in range(n_boxes):
    boxes.append(
        manipulation_props.BoxWithSites(mass=1.5, half_lengths=[0.5, 0.5, 0.5]))

  targets = []
  for _ in range(n_targets):
    targets.append(
        props.PositionDetector(
            pos=[0, 0, 0.5], size=[0.5, 0.5, 0.5], inverted=False,
            visible=True))

  predicates = []
  if include_gtt_predicates:
    predicates.append(
        predicates_module.MoveWalkerToRandomTarget(
            walker=walker, targets=targets))
  if include_move_box_predicates:
    for box_idx in range(len(boxes)):
      predicates.append(
          predicates_module.MoveBoxToRandomTarget(
              walker=walker,
              box=boxes[box_idx],
              box_index=box_idx,
              targets=targets))

  task = PredicateTask(
      walker=walker,
      maze_arena=arena,
      predicates=predicates,
      props=boxes,
      targets=targets,
      max_num_predicates=max_num_predicates,
      randomize_num_predicates=False,
      reward_scale=10.,
      regenerate_predicates=False,
      physics_timestep=0.005,
      control_timestep=control_timestep)
  env = composer.Environment(task=task, time_limit=time_limit)

  return env
コード例 #6
0
    def _build(self,
               size=_DEFAULT_PITCH_SIZE,
               goal_size=None,
               top_camera_distance=_TOP_CAMERA_DISTANCE,
               field_box=False,
               name='pitch'):
        """Construct a pitch with walls and position detectors.

    Args:
      size: a tuple of (length, width) of the pitch.
      goal_size: optional (depth, width, height) indicating the goal size.
        If not specified, the goal size is inferred from pitch size with a fixed
        default ratio.
      top_camera_distance: the distance of the top-down camera to the pitch.
      field_box: adds a "field box" that collides with the ball but not the
        walkers.
      name: the name of this arena.
    """
        super(Pitch, self)._build(name=name)
        self._size = size
        self._goal_size = goal_size
        self._top_camera_distance = top_camera_distance

        self._top_camera = self._mjcf_root.worldbody.add(
            'camera',
            name='top_down',
            pos=[0, 0, top_camera_distance],
            zaxis=[0, 0, 1],
            fovy=_top_down_cam_fovy(self._size, top_camera_distance))

        self._mjcf_root.visual.headlight.set_attributes(ambient=[.4, .4, .4],
                                                        diffuse=[.8, .8, .8],
                                                        specular=[.1, .1, .1])

        # Ensure close up geoms are rendered by egocentric cameras.
        self._mjcf_root.visual.map.znear = 0.0005

        # Build groundplane.
        if len(self._size) != 2:
            raise ValueError(
                '`size` should be a sequence of length 2: got {!r}'.format(
                    self._size))
        self._ground_texture = self._mjcf_root.asset.add(
            'texture',
            type='2d',
            builtin='checker',
            name='groundplane',
            rgb1=[0.3, 0.8, 0.3],
            rgb2=[0.1, 0.6, 0.1],
            width=300,
            height=300,
            mark='edge',
            markrgb=[0.8, 0.8, 0.8])
        self._ground_material = self._mjcf_root.asset.add(
            'material', name='groundplane', texture=self._ground_texture)
        self._ground_geom = self._mjcf_root.worldbody.add(
            'geom',
            type='plane',
            material=self._ground_material,
            size=list(self._size) +
            [max(self._size) * _GROUND_GEOM_GRID_RATIO])

        # Build walls.
        self._walls = []
        for wall_pos, wall_xyaxes in _wall_pos_xyaxes(self._size):
            self._walls.append(
                self._mjcf_root.worldbody.add('geom',
                                              type='plane',
                                              rgba=[.1, .1, .1, .8],
                                              pos=wall_pos,
                                              size=[1e-7, 1e-7, 1e-7],
                                              xyaxes=wall_xyaxes))

        # Build goal position detectors.
        # If field_box is enabled, offset goal by 1.0 such that ball reaches the
        # goal position detector before bouncing off the field_box.
        self._fb_offset = 0.5 if field_box else 0.0
        goal_size = self._get_goal_size()
        self._home_goal = props.PositionDetector(
            pos=(-self._size[0] + goal_size[0] + self._fb_offset, 0,
                 goal_size[2]),
            size=goal_size,
            rgba=(0, 0, 1, 0.5),
            visible=True,
            name='home_goal')
        self.attach(self._home_goal)

        self._away_goal = props.PositionDetector(
            pos=(self._size[0] - goal_size[0] - self._fb_offset, 0,
                 goal_size[2]),
            size=goal_size,
            rgba=(1, 0, 0, 0.5),
            visible=True,
            name='away_goal')
        self.attach(self._away_goal)

        # Build inverted field position detectors.
        self._field = props.PositionDetector(
            pos=(0, 0),
            size=(self._size[0] - 2 * goal_size[0],
                  self._size[1] - 2 * goal_size[0]),
            rgba=(1, 0, 0, 0.1),
            inverted=True,
            visible=True,
            name='field')
        self.attach(self._field)

        # Build field box.
        self._field_box = []
        if field_box:
            for wall_pos, wall_xyaxes in _wall_pos_xyaxes(
                (self._field.upper - self._field.lower) / 2.0):
                self._field_box.append(
                    self._mjcf_root.worldbody.add('geom',
                                                  type='plane',
                                                  rgba=[.3, .3, .3, .3],
                                                  pos=wall_pos,
                                                  size=[1e-7, 1e-7, 1e-7],
                                                  xyaxes=wall_xyaxes))
コード例 #7
0
    def _build(self,
               size=_DEFAULT_PITCH_SIZE,
               goal_size=None,
               top_camera_distance=_TOP_CAMERA_DISTANCE,
               name='pitch'):
        """Construct a pitch with walls and position detectors.

    Args:
      size: a tuple of (length, width) of the pitch.
      goal_size: optional (depth, width, height) indicating the goal size.
        If not specified, the goal size is inferred from pitch size with a fixed
        default ratio.
      top_camera_distance: the distance of the top-down camera to the pitch.
      name: the name of this arena.
    """
        super(Pitch, self)._build(name=name)
        self._size = size
        self._goal_size = goal_size
        self._top_camera_distance = top_camera_distance

        self._top_camera = self._mjcf_root.worldbody.add(
            'camera',
            name='top_down',
            pos=[0, 0, top_camera_distance],
            zaxis=[0, 0, 1],
            fovy=_top_down_cam_fovy(self._size, top_camera_distance))

        self._mjcf_root.visual.headlight.set_attributes(ambient=[.4, .4, .4],
                                                        diffuse=[.8, .8, .8],
                                                        specular=[.1, .1, .1])

        # Build groundplane.
        if len(self._size) != 2:
            raise ValueError(
                '`size` should be a sequence of length 2: got {!r}'.format(
                    self._size))
        self._ground_texture = self._mjcf_root.asset.add(
            'texture',
            type='2d',
            builtin='checker',
            name='groundplane',
            rgb1=[0.3, 0.8, 0.3],
            rgb2=[0.1, 0.6, 0.1],
            width=300,
            height=300,
            mark='edge',
            markrgb=[0.8, 0.8, 0.8])
        self._ground_material = self._mjcf_root.asset.add(
            'material', name='groundplane', texture=self._ground_texture)
        self._ground_geom = self._mjcf_root.worldbody.add(
            'geom',
            type='plane',
            material=self._ground_material,
            size=list(self._size) + [_GROUND_GEOM_HEIGHT])

        # Build walls.
        self._walls = []
        for wall_pos, wall_size in _wall_pos_size(self._size):
            self._walls.append(
                self._mjcf_root.worldbody.add('geom',
                                              type='box',
                                              rgba=[.3, .3, .3, .0],
                                              pos=wall_pos,
                                              size=wall_size))
        # Build roof.
        self._roof = self._mjcf_root.worldbody.add('geom',
                                                   type='box',
                                                   rgba=[.3, .3, .3, .3],
                                                   pos=(0., 0.,
                                                        2 * _WALL_HEIGHT),
                                                   group=4,
                                                   size=_roof_size(self._size))

        # Build goal position detectors.
        goal_size = self._get_goal_size()
        self._home_goal = props.PositionDetector(
            pos=(-self._size[0] + goal_size[0], 0, goal_size[2]),
            size=goal_size,
            rgba=(0, 0, 1, 0.5),
            visible=True,
            name='home_goal')
        self.attach(self._home_goal)

        self._away_goal = props.PositionDetector(
            pos=(self._size[0] - goal_size[0], 0, goal_size[2]),
            size=goal_size,
            rgba=(1, 0, 0, 0.5),
            visible=True,
            name='away_goal')
        self.attach(self._away_goal)

        # Build inverted field position detectors.
        self._field = props.PositionDetector(
            pos=(0, 0),
            size=(self._size[0] - 2 * goal_size[0],
                  self._size[1] - 2 * goal_size[0]),
            rgba=(0, 0, 0, 0.1),
            inverted=True,
            visible=True,
            name='field')
        self.attach(self._field)
コード例 #8
0
  def test_error_if_no_predicates_found(self):
    walker = walkers.Ant()
    num_targets = 2
    text_maze = arenas.padded_room.PaddedRoom(
        room_size=8, num_objects=6, pad_with_walls=True)
    maze_arena = arenas.MazeWithTargets(maze=text_maze)
    targets = []
    for _ in range(num_targets):
      targets.append(
          props.PositionDetector(
              pos=[0, 0, 0.5],
              size=[0.5, 0.5, 0.5],
              inverted=False,
              visible=True))
    # Moving the walker to two targets is not possible since the walker is a
    # shared object in use.
    test_predicates = [predicates.MoveWalkerToTarget(walker, targets[0]),
                       predicates.MoveWalkerToTarget(walker, targets[1])]
    task = predicate_task.PredicateTask(
        walker=walker,
        maze_arena=maze_arena,
        predicates=test_predicates,
        targets=targets[1:],
        randomize_num_predicates=False,
        max_num_predicates=2,
        reward_scale=1.0,
        terminating_reward_bonus=2.0,
    )
    random_state = np.random.RandomState(12345)
    env = composer.Environment(task, random_state=random_state)
    with self.assertRaisesWithLiteralMatch(
        ValueError, "Could not find set of active predicates"
        " with unique objects are after 1000 iterations."):
      env.reset()

    # However moving to one of the two targets is fine.
    walker = walkers.Ant()
    num_targets = 2
    text_maze = arenas.padded_room.PaddedRoom(
        room_size=8, num_objects=6, pad_with_walls=True)
    maze_arena = arenas.MazeWithTargets(maze=text_maze)
    targets = []
    for _ in range(num_targets):
      targets.append(
          props.PositionDetector(
              pos=[0, 0, 0.5],
              size=[0.5, 0.5, 0.5],
              inverted=False,
              visible=True))
    test_predicates = [predicates.MoveWalkerToTarget(walker, targets[0]),
                       predicates.MoveWalkerToTarget(walker, targets[1])]
    task = predicate_task.PredicateTask(
        walker=walker,
        maze_arena=maze_arena,
        predicates=test_predicates,
        targets=targets[1:],
        randomize_num_predicates=False,
        max_num_predicates=1,
        reward_scale=1.0,
        terminating_reward_bonus=2.0,
    )
    random_state = np.random.RandomState(12345)
    env = composer.Environment(task, random_state=random_state)
    env.reset()