def main(): parser = _build_arg_parser() args = parser.parse_args() if not len(args.tractograms) == len(args.t1): parser.error("Not the same number of images in input.") all_images = np.concatenate([args.tractograms, args.t1]) assert_inputs_exist(parser, all_images) assert_outputs_exist(parser, args, [args.output_report, "data", "libs"]) if os.path.exists("data"): shutil.rmtree("data") os.makedirs("data") if os.path.exists("libs"): shutil.rmtree("libs") name = "Tracking" columns = ["Nb streamlines"] warning_dict = {} summary, stats = stats_tractogram(columns, args.tractograms) warning_dict[name] = analyse_qa(summary, stats, ["Nb streamlines"]) warning_list = np.concatenate([filenames for filenames in warning_dict[name].values()]) warning_dict[name]['nb_warnings'] = len(np.unique(warning_list)) graphs = [] graph = graph_tractogram("Tracking", columns, summary) graphs.append(graph) summary_dict = {} stats_html = dataframe_to_html(stats) summary_dict[name] = stats_html metrics_dict = {} subjects_dict = {} for subj_metric, t1 in zip(args.tractograms, args.t1): screenshot_path = screenshot_tracking(subj_metric, t1, "data") summary_html = dataframe_to_html(summary.loc[subj_metric]) subjects_dict[subj_metric] = {} subjects_dict[subj_metric]['screenshot'] = screenshot_path subjects_dict[subj_metric]['stats'] = summary_html metrics_dict[name] = subjects_dict nb_subjects = len(args.tractograms) report = Report(args.output_report) report.generate(title="Quality Assurance tractograms", nb_subjects=nb_subjects, summary_dict=summary_dict, graph_array=graphs, metrics_dict=metrics_dict, warning_dict=warning_dict)
def main(): parser = _build_arg_parser() args = parser.parse_args() assert_inputs_exist(parser, args.frf) assert_outputs_exist(parser, args, [args.output_report, "data", "libs"]) if os.path.exists("data"): shutil.rmtree("data") os.makedirs("data") if os.path.exists("libs"): shutil.rmtree("libs") name = "FRF" metrics_names = ["Mean Eigen value 1", "Mean Eigen value 2", "Mean B0"] warning_dict = {} summary, stats = stats_frf(metrics_names, args.frf) warning_dict[name] = analyse_qa(summary, stats, metrics_names) warning_list = np.concatenate([filenames for filenames in warning_dict[name].values()]) warning_dict[name]['nb_warnings'] = len(np.unique(warning_list)) graphs = [] graph = graph_frf("FRF", metrics_names, summary) graphs.append(graph) summary_dict = {} stats_html = dataframe_to_html(stats) summary_dict[name] = stats_html metrics_dict = {} subjects_dict = {} for subj_metric in args.frf: summary_html = dataframe_to_html(summary.loc[subj_metric]) subjects_dict[subj_metric] = {} subjects_dict[subj_metric]['stats'] = summary_html metrics_dict[name] = subjects_dict nb_subjects = len(args.frf) report = Report(args.output_report) report.generate(title="Quality Assurance FRF", nb_subjects=nb_subjects, summary_dict=summary_dict, graph_array=graphs, metrics_dict=metrics_dict, warning_dict=warning_dict)
def _subj_parralel(subj_metric, summary, name, skip, nb_columns): subjects_dict = {} screenshot_path = screenshot_mosaic_wrapper(subj_metric, output_prefix=name, directory="data", skip=skip, nb_columns=nb_columns) summary_html = dataframe_to_html(summary.loc[subj_metric]) subjects_dict[subj_metric] = {} subjects_dict[subj_metric]['screenshot'] = screenshot_path subjects_dict[subj_metric]['stats'] = summary_html return subjects_dict
def _subj_parralel(images_no_bet, images_bet_mask, name, skip, summary, nb_columns): subjects_dict = {} for subj_metric, mask in zip(images_no_bet, images_bet_mask): screenshot_path = screenshot_mosaic_blend(subj_metric, mask, output_prefix=name, directory="data", blend_val=0.3, skip=skip, nb_columns=nb_columns, is_mask=True) summary_html = dataframe_to_html(summary.loc[subj_metric]) subjects_dict[subj_metric] = {} subjects_dict[subj_metric]['screenshot'] = screenshot_path subjects_dict[subj_metric]['stats'] = summary_html return subjects_dict
def main(): parser = _build_arg_parser() args = parser.parse_args() if not len(args.images_no_bet) == len(args.images_bet_mask): parser.error("Not the same number of images in input.") all_images = np.concatenate([args.images_no_bet, args.images_bet_mask]) assert_inputs_exist(parser, all_images) assert_outputs_exist(parser, args, [args.output_report, "data", "libs"]) if os.path.exists("data"): shutil.rmtree("data") os.makedirs("data") if os.path.exists("libs"): shutil.rmtree("libs") metrics = args.images_no_bet name = args.image_type curr_metrics = ['Mean {}'.format(name), 'Median {}'.format(name)] summary, stats = stats_mean_median(curr_metrics, metrics) warning_dict = {} warning_dict[name] = analyse_qa(summary, stats, curr_metrics) warning_images = [filenames for filenames in warning_dict[name].values()] warning_list = np.concatenate([warning_images]) warning_dict[name]['nb_warnings'] = len(np.unique(warning_list)) graphs = [] graph = graph_mean_median('Mean {}'.format(name), curr_metrics, summary) graphs.append(graph) stats_html = dataframe_to_html(stats) summary_dict = {} summary_dict[name] = stats_html pool = Pool(args.nb_threads) subjects_dict_pool = pool.starmap( _subj_parralel, zip(np.array_split(np.array(args.images_no_bet), args.nb_threads), np.array_split(np.array(args.images_bet_mask), args.nb_threads), itertools.repeat(name), itertools.repeat(args.skip), itertools.repeat(summary), itertools.repeat(args.nb_columns))) pool.close() pool.join() metrics_dict = {} subjects_dict = {} for dict_sub in subjects_dict_pool: for key in dict_sub: subjects_dict[key] = dict_sub[key] metrics_dict[name] = subjects_dict nb_subjects = len(args.images_no_bet) report = Report(args.output_report) report.generate(title="Quality Assurance BET " + args.image_type, nb_subjects=nb_subjects, summary_dict=summary_dict, graph_array=graphs, metrics_dict=metrics_dict, warning_dict=warning_dict)
def main(): parser = _build_arg_parser() args = parser.parse_args() if args.tracking_type == "local": if not len(args.seeding_mask) == len(args.tracking_mask): parser.error("Not the same number of images in input.") all_images = np.concatenate([args.seeding_mask, args.tracking_mask]) else: if not len(args.seeding_mask) == len(args.map_include) ==\ len(args.map_exclude): parser.error("Not the same number of images in input.") all_images = np.concatenate( [args.seeding_mask, args.map_include, args.map_exclude]) assert_inputs_exist(parser, all_images) assert_outputs_exist(parser, args, [args.output_report, "data", "libs"]) if os.path.exists("data"): shutil.rmtree("data") os.makedirs("data") if os.path.exists("libs"): shutil.rmtree("libs") if args.tracking_type == "local": metrics_names = [[args.seeding_mask, 'Seeding mask'], [args.tracking_mask, 'Tracking mask']] else: metrics_names = [[args.seeding_mask, 'Seeding mask'], [args.map_include, 'Map include'], [args.map_exclude, 'Maps exclude']] metrics_dict = {} summary_dict = {} graphs = [] warning_dict = {} for metrics, name in metrics_names: columns = ["{} volume".format(name)] summary, stats = stats_mask_volume(columns, metrics) warning_dict[name] = analyse_qa(summary, stats, columns) warning_list = np.concatenate( [filenames for filenames in warning_dict[name].values()]) warning_dict[name]['nb_warnings'] = len(np.unique(warning_list)) graph = graph_mask_volume('{} mean volume'.format(name), columns, summary) graphs.append(graph) stats_html = dataframe_to_html(stats) summary_dict[name] = stats_html subjects_dict = {} pool = Pool(args.nb_threads) subjects_dict_pool = pool.starmap( _subj_parralel, zip(metrics, itertools.repeat(summary), itertools.repeat(name), itertools.repeat(args.skip), itertools.repeat(args.nb_columns))) pool.close() pool.join() for dict_sub in subjects_dict_pool: for key in dict_sub: subjects_dict[key] = dict_sub[key] metrics_dict[name] = subjects_dict nb_subjects = len(args.seeding_mask) report = Report(args.output_report) report.generate(title="Quality Assurance tracking maps", nb_subjects=nb_subjects, summary_dict=summary_dict, graph_array=graphs, metrics_dict=metrics_dict, warning_dict=warning_dict)
def main(): parser = _build_arg_parser() args = parser.parse_args() if not len(args.t1_warped) == len(args.rgb) == len(args.wm) ==\ len(args.gm) == len(args.csf): parser.error("Not the same number of images in input.") all_images = np.concatenate( [args.t1_warped, args.rgb, args.wm, args.gm, args.csf]) assert_inputs_exist(parser, all_images) assert_outputs_exist(parser, args, [args.output_report, "data", "libs"]) if os.path.exists("data"): shutil.rmtree("data") os.makedirs("data") if os.path.exists("libs"): shutil.rmtree("libs") name = "Register T1" curr_metrics = [ 'Mean {} in WM'.format(name), 'Mean {} in GM'.format(name), 'Mean {} in CSF'.format(name), 'Max {} in WM'.format(name) ] warning_dict = {} summary, stats = stats_mean_in_tissues(curr_metrics, args.t1_warped, args.wm, args.gm, args.csf) warning_dict[name] = analyse_qa(summary, stats, curr_metrics[:3]) warning_list = np.concatenate( [filenames for filenames in warning_dict[name].values()]) warning_dict[name]['nb_warnings'] = len(np.unique(warning_list)) graphs = [] graph = graph_mean_in_tissues('Mean {}'.format(name), curr_metrics[:3], summary) graphs.append(graph) stats_html = dataframe_to_html(stats) summary_dict = {} summary_dict[name] = stats_html pool = Pool(args.nb_threads) subjects_dict_pool = pool.starmap( _subj_parralel, zip(args.t1_warped, args.rgb, itertools.repeat(summary), itertools.repeat(name), itertools.repeat(args.skip), itertools.repeat(args.nb_columns))) pool.close() pool.join() metrics_dict = {} subjects_dict = {} for dict_sub in subjects_dict_pool: for key in dict_sub: subjects_dict[key] = dict_sub[key] metrics_dict[name] = subjects_dict nb_subjects = len(args.t1_warped) report = Report(args.output_report) report.generate(title="Quality Assurance registration", nb_subjects=nb_subjects, summary_dict=summary_dict, graph_array=graphs, metrics_dict=metrics_dict, warning_dict=warning_dict)
def main(): parser = _build_arg_parser() args = parser.parse_args() if not len(args.fa) == len(args.md) == len(args.rd) == len(args.ad) ==\ len(args.residual) == len(args.evecs_v1) == len(args.wm) ==\ len(args.gm) == len(args.csf): parser.error("Not the same number of images in input.") all_images = np.concatenate([ args.fa, args.md, args.rd, args.ad, args.residual, args.evecs_v1, args.wm, args.gm, args.csf ]) assert_inputs_exist(parser, all_images) assert_outputs_exist(parser, args, [args.output_report, "data", "libs"]) if os.path.exists("data"): shutil.rmtree("data") os.makedirs("data") if os.path.exists("libs"): shutil.rmtree("libs") metrics_names = [[args.fa, 'FA'], [args.md, 'MD'], [args.rd, 'RD'], [args.ad, 'AD'], [args.residual, "Residual"]] metrics_dict = {} summary_dict = {} graphs = [] warning_dict = {} for metrics, name in metrics_names: subjects_dict = {} curr_metrics = [ 'Mean {} in WM'.format(name), 'Mean {} in GM'.format(name), 'Mean {} in CSF'.format(name), 'Max {} in WM'.format(name) ] summary, stats = stats_mean_in_tissues(curr_metrics, metrics, args.wm, args.gm, args.csf) warning_dict[name] = analyse_qa(summary, stats, curr_metrics[:3]) warning_list = np.concatenate( [filenames for filenames in warning_dict[name].values()]) warning_dict[name]['nb_warnings'] = len(np.unique(warning_list)) graph = graph_mean_in_tissues('Mean {}'.format(name), curr_metrics[:3], summary) graphs.append(graph) stats_html = dataframe_to_html(stats) summary_dict[name] = stats_html pool = Pool(args.nb_threads) subjects_dict_pool = pool.starmap( _subj_parralel, zip(metrics, itertools.repeat(summary), itertools.repeat(name), itertools.repeat(args.skip), itertools.repeat(args.nb_columns))) pool.close() pool.join() for dict_sub in subjects_dict_pool: for key in dict_sub: subjects_dict[key] = dict_sub[key] metrics_dict[name] = subjects_dict subjects_dict = {} name = "Peaks" for fa, evecs in zip(args.fa, args.evecs_v1): screenshot_path = screenshot_fa_peaks(fa, evecs, "data") subjects_dict[evecs] = {} subjects_dict[evecs]['screenshot'] = screenshot_path metrics_dict[name] = subjects_dict nb_subjects = len(args.fa) report = Report(args.output_report) report.generate(title="Quality Assurance DTI metrics", nb_subjects=nb_subjects, summary_dict=summary_dict, graph_array=graphs, metrics_dict=metrics_dict, warning_dict=warning_dict)
def main(): parser = _build_arg_parser() args = parser.parse_args() if not len(args.bval) == len(args.bvec): parser.error("Not the same number of images in input.") all_data = np.concatenate([args.bval, args.bvec]) assert_inputs_exist(parser, all_data) assert_outputs_exist(parser, args, [args.output_report, "data", "libs"]) if os.path.exists("data"): shutil.rmtree("data") os.makedirs("data") if os.path.exists("libs"): shutil.rmtree("libs") name = "DWI Protocol" summary, stats_for_graph, stats_all, shells = dwi_protocol(args.bval) warning_dict = {} warning_dict[name] = analyse_qa(stats_for_graph, stats_all, ["Nbr shells", "Nbr directions"]) warning_images = [filenames for filenames in warning_dict[name].values()] warning_list = np.concatenate(warning_images) warning_dict[name]['nb_warnings'] = len(np.unique(warning_list)) stats_html = dataframe_to_html(stats_all) summary_dict = {} summary_dict[name] = stats_html graphs = [] graphs.append( graph_directions_per_shells("Nbr directions per shell", shells)) graphs.append(graph_subjects_per_shells("Nbr subjects per shell", shells)) for c in ["Nbr shells", "Nbr directions"]: graph = graph_dwi_protocol(c, c, stats_for_graph) graphs.append(graph) subjects_dict = {} for bval, bvec in zip(args.bval, args.bvec): filename = os.path.basename(bval) subjects_dict[bval] = {} points = np.genfromtxt(bvec) if points.shape[0] == 3: points = points.T bvals = np.genfromtxt(bval) centroids, shell_idx = identify_shells(bvals) ms = build_ms_from_shell_idx(points, shell_idx) plot_proj_shell(ms, centroids, use_sym=True, use_sphere=True, same_color=False, rad=0.025, opacity=0.2, ofile=os.path.join("data", name + filename), ores=(800, 800)) subjects_dict[bval]['screenshot'] = os.path.join( "data", name + filename + '.png') metrics_dict = {} for subj in args.bval: summary_html = dataframe_to_html(summary[subj]) subjects_dict[subj]['stats'] = summary_html metrics_dict[name] = subjects_dict nb_subjects = len(args.bval) report = Report(args.output_report) report.generate(title="Quality Assurance DWI protocol", nb_subjects=nb_subjects, metrics_dict=metrics_dict, summary_dict=summary_dict, graph_array=graphs, warning_dict=warning_dict)