コード例 #1
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_frame_times_not_matching_error(self):
     frame_times1 = np.arange(10) * 2
     frame_times2 = np.arange(10) * 3
     reg1 = Regressor('test1', frame_times1, onset=[0])
     reg2 = Regressor('test2', frame_times2, onset=[2])
     with self.assertRaises(ValueError):
         my_make_first_level_design_matrix([reg1, reg2])
コード例 #2
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_alternative_constructor_from_values(self):
     frame_times = np.arange(100) * 2
     reg1 = Regressor('test', frame_times, onset=[0])
     reg2 = Regressor.from_values('test_from_values',
                                  frame_times=np.arange(100) * 2,
                                  values=np.zeros(100))
     self.assertEqual(reg1.values.shape, reg2.values.shape)
コード例 #3
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_corr_method(self):
     frame_times = np.arange(10) * 2
     np.random.seed(0)
     values1 = np.random.random(10)
     values2 = np.random.random(10)
     reg1 = Regressor.from_values('test1', frame_times, values1)
     reg2 = Regressor.from_values('test2', frame_times, values2)
     self.assertEqual(reg1.corr(reg2), np.corrcoef(values1, values2)[0, 1])
     self.assertEqual(reg2.corr(reg1), np.corrcoef(values1, values2)[0, 1])
コード例 #4
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_adding_frame_times_does_not_match(self):
     frame_times1 = np.arange(10) * 2
     frame_times2 = np.arange(10) * 2.5
     np.random.seed(0)
     reg1 = Regressor.from_values('test', frame_times1,
                                  np.random.random(10))
     reg2 = Regressor.from_values('test', frame_times2,
                                  np.random.random(10))
     with self.assertRaises(ValueError):
         reg1 + reg2
コード例 #5
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_subtracting_regressors(self):
     frame_times = np.arange(10) * 2
     np.random.seed(0)
     values1 = np.random.random(10)
     values2 = np.random.random(10)
     reg = (Regressor.from_values('test1', frame_times, values1) -
            Regressor.from_values('test2', frame_times, values2))
     self.assertTrue((frame_times == reg.frame_times).all())
     self.assertTrue((reg.values == (values1 - values2)[:,
                                                        np.newaxis]).all())
     self.assertEqual(reg.name, 'test1-test2')
コード例 #6
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_empty_regressors_are_removed(self):
     frame_times = np.arange(10) * 2
     reg_empty1 = Regressor('empty1', frame_times, onset=[])
     reg_empty2 = Regressor('empty2', frame_times, onset=[])
     reg3 = Regressor('test3', frame_times, onset=[0])
     regressors = [reg_empty1, reg_empty2, reg3]
     dm, conditions = my_make_first_level_design_matrix(regressors)
     self.assertTrue('empty1' not in dm.columns)
     self.assertTrue('empty1' not in conditions)
     self.assertTrue('empty2' not in dm.columns)
     self.assertTrue('empty2' not in conditions)
     self.assertTrue('test3' in dm.columns)
     self.assertTrue('test3' in conditions)
コード例 #7
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_incorrect_initialization_for_mandatory_arguments(self):
     frame_times = np.arange(10) * 2
     # no frame times and onset
     with self.assertRaises(TypeError):
         Regressor('test')
     # no onset
     with self.assertRaises(TypeError):
         Regressor('test', frame_times)
     # frame_times is not np.array
     with self.assertRaises(TypeError):
         Regressor('test', [0, 2, 4, 6, 8, 10], [0])
     # onset type is not array-like
     with self.assertRaises(TypeError):
         Regressor('test', frame_times, 0)
コード例 #8
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_regressor_is_not_demeaned(self):
     frame_times = np.arange(100) * 2
     reg1 = Regressor('test',
                      frame_times,
                      onset=[0, 100],
                      modulation=[1, 1])
     reg2 = Regressor('test',
                      frame_times,
                      onset=[0, 100],
                      modulation=[-.99, -.99])
     reg3 = Regressor('test', frame_times, onset=[100], modulation=[50])
     self.assertTrue(np.mean(reg1.values) > 10**(-15))
     self.assertTrue(np.mean(reg2.values) > 10**(-15))
     self.assertTrue(np.mean(reg3.values) > 10**(-15))
コード例 #9
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_simple_linear_combination(self):
     frame_times = np.arange(10) * 2
     np.random.seed(0)
     values1 = np.random.random(10)
     values2 = np.random.random(10)
     for a, b in itertools.product((-2, -1, -0.99, 0, .99, 1, 2), repeat=2):
         for fn in [operator.add, operator.sub]:
             reg = fn(
                 a * Regressor.from_values('test1', frame_times, values1),
                 b * Regressor.from_values('test2', frame_times, values2))
             self.assertTrue((frame_times == reg.frame_times).all())
             true_values = fn(a * values1, b * values2)
             self.assertTrue((reg.values == true_values[:,
                                                        np.newaxis]).all())
             sign = '+' if fn == operator.add else '-'
             self.assertEqual(reg.name, f'{a}*test1{sign}{b}*test2')
コード例 #10
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_from_values_constructor(self):
     frame_times = np.arange(10) * 2
     np.random.seed(0)
     values = np.random.random(10)
     reg = Regressor.from_values('test', frame_times, values)
     self.assertTrue((frame_times == reg.frame_times).all())
     self.assertTrue((values[:, np.newaxis] == reg.values).all())
     self.assertEqual('test', reg.name)
コード例 #11
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_multiplication_incorrect_types(self):
     frame_times = np.arange(10) * 2
     reg = Regressor.from_values('test', frame_times, np.random.random(10))
     with self.assertRaises(TypeError):
         reg * np.random.random(10)
     with self.assertRaises(TypeError):
         reg * '3'
     with self.assertRaises(TypeError):
         reg * reg
コード例 #12
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_regressor_is_deameaned(self):
     frame_times = np.arange(100) * 2
     # modulation should be demaned when
     # modulator has more than one event and event values are not equal
     for modulation in ([1, 2], [-1, -2], [-1, 2], [-2, 1]):
         reg = Regressor('test',
                         frame_times,
                         onset=[0, 100],
                         modulation=modulation)
         self.assertTrue(np.mean(reg.values) < 10**(-15))
コード例 #13
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_division(self):
     frame_times = np.arange(10) * 2
     np.random.seed(0)
     values = np.random.random(10)
     for scalar in (-2, -1, -0.5, .5, 1, 2):
         reg = Regressor.from_values('test1', frame_times, values) / scalar
         self.assertTrue((frame_times == reg.frame_times).all())
         self.assertTrue(
             (reg.values == (values / scalar)[:, np.newaxis]).all())
         self.assertEqual(reg.name, f'{1/scalar}*test1')
コード例 #14
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_correct_values_with_duration(self):
     frame_times = np.arange(10) * 2
     reg = Regressor('test', frame_times, [0], duration=[.25])
     values = np.array([[0.], [0.00947523], [0.05035788], [0.05529071],
                        [0.03214266], [0.01189756], [0.00075046],
                        [-0.00412143], [-0.00525569], [-0.00442661]])
     self.assertTrue(np.isclose(reg.values, values).all())
     self.assertTrue((reg.frame_times == frame_times).all())
     self.assertEqual(reg.name, 'test')
     self.assertEqual(len(reg), 10)
コード例 #15
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_complex_design_matrix_with_duration(self):
     frame_times = np.arange(100) * 2
     reg1 = Regressor('test1', frame_times, onset=[0, 100])
     reg2 = Regressor('test2',
                      frame_times,
                      onset=[50, 150],
                      duration=[.1, .1])
     dm, conditions = my_make_first_level_design_matrix([reg1, reg2])
     # true design matrix
     events = pd.DataFrame(columns=['onset', 'duration', 'trial_type'],
                           data=[[0, 0, 'test1'], [100, 0, 'test1'],
                                 [50, 0.1, 'test2'], [150, 0.1, 'test2']])
     dm_true = design_matrix.make_first_level_design_matrix(
         frame_times=np.arange(100) * 2, events=events, hrf_model='spm')
     self.assertTrue(dm_true.equals(dm))
     self.assertEqual({'test1', 'test2'}, set(conditions.keys()))
     self.assertEqual(conditions['test1'][0], 1)
     self.assertEqual(np.sum(conditions['test1']), 1)
     self.assertEqual(conditions['test2'][1], 1)
     self.assertEqual(np.sum(conditions['test2']), 1)
コード例 #16
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_multiplication(self):
     frame_times = np.arange(10) * 2
     np.random.seed(0)
     values = np.random.random(10)
     for scalar in (-2, -1, -0.99, 0, .99, 1, 2):
         # right handed __mul__ is also tested here
         reg = scalar * Regressor.from_values('test1', frame_times, values)
         self.assertTrue((frame_times == reg.frame_times).all())
         self.assertTrue(
             (reg.values == (values * scalar)[:, np.newaxis]).all())
         self.assertEqual(reg.name, f'{scalar}*test1')
コード例 #17
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_simple_design_matrix(self):
     reg = Regressor(name='test', frame_times=np.arange(10) * 2, onset=[0])
     dm, conditions = my_make_first_level_design_matrix([reg])
     # create true design matrix
     events = pd.DataFrame(columns=['onset', 'duration', 'trial_type'],
                           data=[[0, 0, 'test']])
     dm_true = design_matrix.make_first_level_design_matrix(
         frame_times=np.arange(10) * 2, events=events, hrf_model='spm')
     self.assertTrue(dm_true.equals(dm))
     self.assertEqual(len(conditions), 1)
     self.assertTrue((conditions['test'] == np.array([1, 0])).all())
コード例 #18
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_correct_values_no_duration_no_modulation(self):
     frame_times = np.arange(10) * 2
     reg = Regressor('test', frame_times, [0])
     values = np.array([[0.00000000e+00], [1.63857515e-03],
                        [7.44648838e-03], [7.75615867e-03],
                        [4.38271652e-03], [1.56898270e-03],
                        [4.39318536e-05], [-6.11118379e-04],
                        [-7.49595149e-04], [-6.20977746e-04]])
     self.assertTrue(np.isclose(reg.values, values).all())
     self.assertTrue((reg.frame_times == frame_times).all())
     self.assertEqual(reg.name, 'test')
     self.assertEqual(len(reg), 10)
コード例 #19
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
    def test_adding_incorrect_types(self):
        frame_times = np.arange(10) * 2
        reg = Regressor.from_values('test', frame_times, np.arange(10) - 4.5)
        with self.assertRaises(TypeError):
            reg + np.random.random(10)
        with self.assertRaises(TypeError):
            reg + [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

        class SomeClass:
            values = np.random.random(10)

        with self.assertRaises(TypeError):
            reg + SomeClass()
コード例 #20
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_incorrect_initialization_too_many_dimensions(self):
     # onset, modulation and duration should have single dimension, e.g.
     # (3, ) and not (3, 1) or (1, 3)
     frame_times = np.arange(10) * 2
     a2v = np.array([1, 2, 3])[:, np.newaxis]
     a2h = np.array([1, 2, 3])[np.newaxis, :]
     for v1, v2, v3 in itertools.product((a2v, a2h), repeat=3):
         # this is single correct exception
         if v1.shape != (1, 3) and v2.shape != (1, 3) and v3.shape != (1,
                                                                       3):
             with self.assertRaises(ValueError):
                 Regressor('test',
                           frame_times,
                           v1,
                           modulation=v2,
                           duration=v3)
コード例 #21
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_design_matrix_with_duration_and_modulation(self):
     frame_times = np.arange(10) * 2
     reg = Regressor('test',
                     frame_times,
                     onset=[0, 10],
                     duration=[.2, .3],
                     modulation=[2, 4])
     dm, conditions = my_make_first_level_design_matrix([reg])
     # true design matrix (used demeaned modulation)
     events = pd.DataFrame(
         columns=['onset', 'duration', 'trial_type', 'modulation'],
         data=[[0, .2, 'test', -1], [10, .3, 'test', 1]])
     dm_true = design_matrix.make_first_level_design_matrix(
         frame_times=np.arange(10) * 2, events=events, hrf_model='spm')
     self.assertTrue(dm_true.equals(dm))
     self.assertEqual(len(conditions), 1)
     self.assertTrue((conditions['test'] == np.array([1, 0])).all())
コード例 #22
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_is_empty(self):
     frame_times = np.arange(10) * 2
     self.assertTrue(Regressor('test', frame_times, []).is_empty)
     # onset begins after last frame time
     self.assertTrue(Regressor('test', frame_times, [20]).is_empty)
     self.assertFalse(Regressor('test', frame_times, [0]).is_empty)
     self.assertTrue(
         Regressor.from_values('test', frame_times, np.zeros(10)).is_empty)
     self.assertTrue(
         Regressor.from_values('test', frame_times,
                               [0 for _ in range(10)]).is_empty)
     self.assertFalse(
         Regressor.from_values('test', frame_times,
                               [0.0001] + [0 for _ in range(9)]).is_empty)
コード例 #23
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_incorrect_initialization_dimension_mismatch(self):
     frame_times = np.arange(10) * 2
     for v1, v2, v3 in itertools.permutations(
         ([0, 2], np.array([0, 2]), (0, 2, 4))):
         with self.assertRaises(ValueError):
             Regressor('test', frame_times, v1, modulation=v2, duration=v3)
コード例 #24
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_correct_initialization(self):
     frame_times = np.arange(10) * 2
     # no events are specified
     Regressor('test', frame_times, [])
     Regressor('test', frame_times, np.array([]))
     # different event types
     Regressor('test', frame_times, [1, 2])
     Regressor('test', frame_times, np.array([1, 2]))
     # modulation specified
     Regressor('test', frame_times, [1, 2], modulation=[-1, 1])
     Regressor('test', frame_times, [1, 2], modulation=np.array([-1, 1]))
     Regressor('test', frame_times, np.array([1, 2]), modulation=[-1, 1])
     Regressor('test',
               frame_times,
               np.array([1, 2]),
               modulation=np.array([-1, 1]))
     # duration specified
     Regressor('test', frame_times, [1, 2], duration=[0.4, 0.6])
     Regressor('test', frame_times, [1, 2], duration=np.array([0.4, 0.6]))
     Regressor('test', frame_times, np.array([1, 2]), duration=[0.4, 0.6])
     Regressor('test',
               frame_times,
               np.array([1, 2]),
               duration=np.array([0.4, 0.6]))
     # both duration and modulation specified
     for onset, duration, modulation in itertools.product(
         ([1, 2], np.array([1, 2])), repeat=3):
         Regressor('test',
                   frame_times,
                   onset,
                   duration=duration,
                   modulation=modulation)
コード例 #25
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_incorrect_initialization_optional_arguments_as_positional(self):
     frame_times = np.arange(10) * 2
     # modulation and duration must be keyword arguments
     with self.assertRaises(TypeError):
         Regressor('test', frame_times, [0], [0])
コード例 #26
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_all_regressors_are_empty_error(self):
     frame_times = np.arange(10) * 2
     reg_empty1 = Regressor('empty1', frame_times, onset=[])
     with self.assertRaises(ValueError):
         my_make_first_level_design_matrix([reg_empty1])
コード例 #27
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_names_collision_error(self):
     frame_times = np.arange(10) * 2
     reg1 = Regressor('test', frame_times, onset=[0])
     reg2 = Regressor('test', frame_times, onset=[2])
     with self.assertRaises(ValueError):
         my_make_first_level_design_matrix([reg1, reg2])
コード例 #28
0
ファイル: test_glm_utils.py プロジェクト: kbonna/decidenet
 def test_correct_initialization(self):
     frame_times = np.arange(10) * 2
     reg1 = Regressor('test1', frame_times, onset=[0])
     reg2 = Regressor('test2', frame_times, onset=[2])
     my_make_first_level_design_matrix([reg1])
     my_make_first_level_design_matrix([reg1, reg2])