def buildDNN(args): # initialize an DNN object instance if args.loadModel is None: args.layerSizes = [args.InpsSize] + args.hid + [args.OutsSize] net = dnn.DNN(args.layerSizes, dnn.Linear(), args.relu, None, None, args.targMean, args.targStd) net.dropouts = args.dropouts else: net, VariableParaDict = dnn.loadSavedNeuralNet(args.loadModel,True) print >>sys.stderr, "Loaded previous trained model from %s. " % (args.loadModel) if len(args.dropouts)==1 : if (args.dropouts[0] == -1): # use same dropouts as in loaded model net.dropouts = VariableParaDict['dropouts'] net.dropouts = net.dropouts.tolist() else: net.dropouts = [args.dropouts[0] for i in range(len(net.weights))] else: assert(len(args.dropouts)==len(net.weights)) net.dropouts = args.dropouts args.layerSizes = net.layerSizes datNames = VariableParaDict['datNames'] for i in range(len(args.datNames)): assert(args.datNames[i] == datNames[i]) # set training parameters net.learnRates = [args.learnRate for i in range(len(net.layerSizes))] net.momentum = args.momentum net.L2Costs = [args.weightCost for i in range(len(net.layerSizes))] net.nesterov = False net.nestCompare = False net.rmsLims = [None for i in range(len(net.layerSizes))] net.realValuedVis = (not (args.transform == 'binarize')) if net.realValuedVis and args.reducelearnRateVis: net.learnRates[0] = 0.005 return net
def __build_dnn(self, nin, nout, nneurons, nhidden, activation=tf.nn.relu6, outactivation=tf.nn.sigmoid, seed=None): """ Builds a neural network based on the parameters and stores it in self.dnn. """ self.dnn = dnn.DNN(seed=seed) self.dnn.add_layer([nin, nneurons], dropout=0.2) for _ in range(2, nhidden): self.dnn.add_layer([nneurons, nneurons], activation, dropout=0.4) self.dnn.add_layer([nneurons, nout], outactivation) self.dnn.build()
def load(self, path): """ Loads a localizer from disk. Args: path: The path from which a localizer should be loaded. """ with tempfile.TemporaryDirectory() as tmpdir: with zipfile.ZipFile(path, 'r') as zip_: zip_.extractall(path=tmpdir) data = os.path.join(tmpdir, 'data') with open(data) as f: data = json.load(f) self._mean = np.asarray(data['mean']) self._sigma = np.asarray(data['sigma']) self._zscore = data['zscore'] if 'classes' in data: self._classes = data['classes'] else: self._classes = None model = os.path.join(tmpdir, 'model', 'model') self.dnn = dnn.DNN(model_file=model)
n = len(e[e.nonzero()]) print n return float(n) / y.shape[1] print 'loading dataset' trainx, trainy, valix, valiy, testx = loaddata() print 'loading complete' print 'start training' dnlist = [] result = 0 valiresult = 0 num = 30 for i in range(num): print i dn = dnn.DNN([[784, 'relu'], [30, 'relu'], [20, 'softmax'], [10]]) dnlist.append(dn) errorrate = 1.0 while errorrate > 0.1: dn.train(trainx, trainy, 5, 20, 0.2, 0.0) errorrate = err(dn.forward(valix), valiy) print 'errorrate=', errorrate for i in range(num): valiresult = valiresult + dnlist[i].forward(valix) result = result + dnlist[i].forward(testx) errorrate = err(valiresult, valiy) print 'vali errorrate=', errorrate result = result.argmax(axis=0).reshape((-1, 1)) id = np.arange(1, 28001).reshape((-1, 1)) np.savetxt('result.csv', np.hstack((id, result)), fmt='%d', delimiter=',')
acc_list = [] mse_list = [] mse_list_lrr = [] mse_list_krr = [] acc_pca_list = [] mse_pca_list = [] mse_pca_list_lrr = [] mse_pca_list_krr = [] for i in para: print("***************************************") args.noise_term = i print(args) tf.reset_default_graph() model = dnn.DNN(args) acc, mse, mse_lrr, mse_krr, acc_pca, mse_pca, mse_pca_lrr, mse_pca_krr = model.train( ) acc_list.append(acc) mse_list.append(mse) mse_list_lrr.append(mse_lrr) mse_list_krr.append(mse_krr) acc_pca_list.append(acc_pca) mse_pca_list.append(mse_pca) mse_pca_list_lrr.append(mse_pca_lrr) mse_pca_list_krr.append(mse_pca_krr) #noise_term_list.append(i) print("***************************************") Matrix = {}
from flask import Flask, request, json import dnn import time app = Flask(__name__, static_url_path='') det = dnn.DNN("mmod_human_face_detector.dat") @app.route('/') def root(): return app.send_static_file('index.html') @app.route('/post', methods=['POST']) def upload_file(): if not request.method == 'POST': print("post it") return "[]" files = request.files.getlist("files") print(files) _files = [] for (i, file) in enumerate(files): name = ("/tmp/img%d.img" % i) file.save(name) _files.append(name) print(_files)
import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper() training_data = list(training_data) # print(len(training_data)) # print(training_data[0][0].shape) # x, y = training_data[0] # print("Training data shape") # print(x.shape) # print(y.shape) # Display the image # from matplotlib import pyplot as plt # plt.imshow(training_data[1000][0].reshape((28,28)), interpolation='nearest',cmap='gray') # plt.show() import dnn net = dnn.DNN([784, 30, 10]) # print(net.feedForward(training_data[1000][0])) net.sgd(training_data=training_data, epochs=30, mini_batch_size=10, eta=10.0, test_data=validation_data)