DNN2_net=MLP(DNN2_arch) DNN2_net.cuda() if pt_file!='none': print('LOADING MODEL.') checkpoint_load = torch.load(pt_file) CNN_net.load_state_dict(checkpoint_load['CNN_model_par']) DNN1_net.load_state_dict(checkpoint_load['DNN1_model_par']) DNN2_net.load_state_dict(checkpoint_load['DNN2_model_par']) optimizer_CNN = optim.RMSprop(CNN_net.parameters(), lr=lr,alpha=0.95, eps=1e-8) optimizer_DNN1 = optim.RMSprop(DNN1_net.parameters(), lr=lr,alpha=0.95, eps=1e-8) optimizer_DNN2 = optim.RMSprop(DNN2_net.parameters(), lr=lr,alpha=0.95, eps=1e-8) # print("----------------------") # print(DNN2_net(DNN1_net(CNN_net(3200)))) #for epoch in range(N_epochs): test_flag=0 CNN_net.train() DNN1_net.train() DNN2_net.train() loss_sum=0 err_sum=0
'fc_use_laynorm': class_use_laynorm, 'fc_use_laynorm_inp': class_use_laynorm_inp, 'fc_use_batchnorm_inp': class_use_batchnorm_inp, 'fc_act': class_act, } DNN2_net = MLP(DNN2_arch) DNN2_net.cuda() if pt_file != 'none': checkpoint_load = torch.load(pt_file) CNN_net.load_state_dict(checkpoint_load['CNN_model_par']) DNN1_net.load_state_dict(checkpoint_load['DNN1_model_par']) DNN2_net.load_state_dict(checkpoint_load['DNN2_model_par']) optimizer_CNN = optim.RMSprop(CNN_net.parameters(), lr=lr, alpha=0.95, eps=1e-8) optimizer_DNN1 = optim.RMSprop(DNN1_net.parameters(), lr=lr, alpha=0.95, eps=1e-8) optimizer_DNN2 = optim.RMSprop(DNN2_net.parameters(), lr=lr, alpha=0.95, eps=1e-8) for epoch in range(N_epochs): test_flag = 0