コード例 #1
0
 def start_from_file(self, fileref):
     #logmessage("Starting from file " + str(fileref))
     existing_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id)).first()
     if existing_entry is not None:
         return
     file_info = get_info_from_file_reference(fileref, folder='sources')
     if 'fullpath' not in file_info or file_info['fullpath'] is None or not os.path.exists(file_info['fullpath']):
         return
         #raise Exception("File reference " + str(fileref) + " is invalid")
     with open(file_info['fullpath'], 'r', encoding='utf-8') as fp:
         content = fp.read()
     if 'mimetype' in file_info and file_info['mimetype'] == 'application/json':
         aref = json.loads(content)
     elif 'extension' in file_info and file_info['extension'].lower() in ['yaml', 'yml']:
         aref = yaml.load(content, Loader=yaml.FullLoader)
     if type(aref) is dict and hasattr(self, 'group_id'):
         the_group_id = re.sub(r'.*:', '', self.group_id)
         if the_group_id in aref:
             aref = aref[the_group_id]
     if type(aref) is list:
         nowtime = datetime.datetime.utcnow()
         for entry in aref:
             if 'independent' in entry:
                 new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(entry['independent']), 'base64').decode(), dependent=codecs.encode(pickle.dumps(entry.get('dependent', None)), 'base64').decode(), modtime=nowtime, create_time=nowtime, active=True, key=entry.get('key', None), info=codecs.encode(pickle.dumps(entry['info']), 'base64').decode() if entry.get('info', None) is not None else None)
                 db.session.add(new_entry)
         db.session.commit()
コード例 #2
0
ファイル: machinelearning.py プロジェクト: jhpyle/docassemble
 def start_from_file(self, fileref):
     #logmessage("Starting from file " + str(fileref))
     existing_entry = MachineLearning.query.filter_by(group_id=self.group_id).first()
     if existing_entry is not None:
         return
     file_info = get_info_from_file_reference(fileref, folder='sources')
     if 'fullpath' not in file_info or file_info['fullpath'] is None or not os.path.exists(file_info['fullpath']):
         return
         #raise Exception("File reference " + str(fileref) + " is invalid")
     with open(file_info['fullpath'], 'rU', encoding='utf-8') as fp:
         content = fp.read()
     if 'mimetype' in file_info and file_info['mimetype'] == 'application/json':
         aref = json.loads(content)
     elif 'extension' in file_info and file_info['extension'].lower() in ['yaml', 'yml']:
         aref = yaml.load(content, Loader=yaml.FullLoader)
     if type(aref) is dict and hasattr(self, 'group_id'):
         the_group_id = re.sub(r'.*:', '', self.group_id)
         if the_group_id in aref:
             aref = aref[the_group_id]
     if type(aref) is list:
         nowtime = datetime.datetime.utcnow()
         for entry in aref:
             if 'independent' in entry:
                 new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(entry['independent']), 'base64').decode(), dependent=codecs.encode(pickle.dumps(entry.get('dependent', None)), 'base64').decode(), modtime=nowtime, create_time=nowtime, active=True, key=entry.get('key', None), info=codecs.encode(pickle.dumps(entry['info']), 'base64').decode() if entry.get('info', None) is not None else None)
                 db.session.add(new_entry)
         db.session.commit()