def run_opti(): current_path = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) # generate the directory apts = current_path + "/allpoints" if not os.path.exists(apts): os.makedirs(apts) # create the stop file stp = current_path + "allpoints/stop.dat" stp_path = Path(stp) if not stp_path.is_file(): stop = 0 fout = open("allpoints/stop.dat", 'w') fout.write(str(stop) + "\n") fout.close() while stop == 0: # DOGS_standalone() will first generate the initial points, then run alpha-DOGS algorithm. DOGS_standlone() # The "solver_lorenz" function will read from "pts_to_eval" and generate a file named "surr_J_new.dat" # containing all information about function evaluation. dogs.solver_lorenz() # Read stop file stop = int(np.loadtxt("allpoints/stop.dat")) print('stop = ', stop) return
stp_path = Path(stp) if not stp_path.is_file(): stop = 0 fout = open("allpoints/stop.dat", 'w') fout.write(str(stop) + "\n") fout.close() while stop == 0: # DOGS_standalone() will first generate the initial points, then run alpha-DOGS algorithm. DOGS_standlone() # The "solver_lorenz" function will read from "pts_to_eval" and generate a file named "surr_J_new.dat" # containing all information about function evaluation. dogs.solver_lorenz() # Read stop file stop = int(np.loadtxt("allpoints/stop.dat")) print('stop = ', stop) return ################################################################################################################ #run_opti() #DOGS_standlone() dogs.solver_lorenz() # Delete the directory of allpoints #current_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) #shutil.rmtree(current_path + "/allpoints")