コード例 #1
0
def test_nest_matrix(pushpop_parameters):

    # Create Matrices and insert into nest
    A00 = PETScMatrix()
    A01 = PETScMatrix()
    A10 = PETScMatrix()
    mesh = UnitSquareMesh(12, 12)
    V = FunctionSpace(mesh, "Lagrange", 2)
    Q = FunctionSpace(mesh, "Lagrange", 1)
    u, v = TrialFunction(V), TestFunction(V)
    p, q = TrialFunction(Q), TestFunction(Q)
    assemble(u * v * dx, tensor=A00)
    assemble(p * v * dx, tensor=A01)
    assemble(u * q * dx, tensor=A10)

    AA = PETScNestMatrix([A00, A01, A10, None])

    # Create compatible RHS Vectors and insert into nest
    u = PETScVector()
    p = PETScVector()
    x = PETScVector()

    A00.init_vector(u, 1)
    A01.init_vector(p, 1)
    AA.init_vectors(x, [u, p])
コード例 #2
0
ファイル: test_109.py プロジェクト: zzyatlantise/fenics-qa
def project(expr, space):
    u, v = TrialFunction(space), TestFunction(space)
    a = inner(u, v)*dx
    L = inner(expr, v)*dx
    A, b = PETScMatrix(), PETScVector()
    assemble_system(a, L, A_tensor=A, b_tensor=b)

    uh = Function(space)
    x = uh.vector()
    solve(A, x, b, 'lu')

    lmax = SLEPcEigenSolver(A)
    lmax.parameters["spectrum"] = "largest magnitude"
    lmax.parameters["problem_type"] = "hermitian"
    lmax.solve(2)
    lmax = max([lmax.get_eigenpair(i)[0] for i in range(lmax.get_number_converged())])

    lmin = SLEPcEigenSolver(A)
    lmin.parameters["spectrum"] = "smallest magnitude"
    lmin.parameters["problem_type"] = "hermitian"
    lmin.solve(2)
    lmin = max([lmin.get_eigenpair(i)[0] for i in range(lmin.get_number_converged())])

    print space.dim(), 'Cond number', lmax/lmin



    
    return uh
コード例 #3
0
 def vector(self):
     '''
     A PETSc vector which is wired up with coefficient vectors of 
     the components. So change to component changes this and vice 
     versa
     '''
     return PETScVector(self.petsc_vec())
コード例 #4
0
ファイル: block_utils.py プロジェクト: fanronghong/fenics_ii
            def multTranspose(self, mat, x, y):
                '''y = A.T*x'''
                AT = block_transpose(self.A)

                y *= 0
                x_bvec = PETScVector(x)
                y_bvec = AT * x_bvec
                y.axpy(1., as_petsc(y_bvec))
コード例 #5
0
ファイル: test_petsc.py プロジェクト: orevans/dolfin
def test_vector():
    "Test PETScVector interface"

    prefix = "my_vector_"
    x = PETScVector(mpi_comm_world())
    x.set_options_prefix(prefix)

    assert x.get_options_prefix() == prefix
    x.init(300)
    assert x.get_options_prefix() == prefix
コード例 #6
0
ファイル: convert.py プロジェクト: MiroK/fenics_ii
def convert(bmat, algorithm='numpy'):
    '''
    Attempt to convert bmat to a PETSc(Matrix/Vector) object.
    If succed this is at worst a number.
    '''
    # Block vec conversion
    if isinstance(bmat, block_vec):
        array = block_vec_to_numpy(bmat)
        vec = PETSc.Vec().createWithArray(array)
        vec.assemble()
        return PETScVector(vec)
    
    # Conversion of bmat is bit more involved because of the possibility
    # that some of the blocks are numbers or composition of matrix operations
    if isinstance(bmat, block_mat):
        # Create collpsed bmat
        row_sizes, col_sizes = bmat_sizes(bmat)
        nrows, ncols = len(row_sizes), len(col_sizes)
        indices = itertools.product(list(range(nrows)), list(range(ncols)))

        blocks = np.zeros((nrows, ncols), dtype='object')
        for block, (i, j) in zip(bmat.blocks.flatten(), indices):
            # This might is guaranteed to be matrix or number
            A = collapse(block)

            if is_number(A):
                # Diagonal matrices can be anything provided square
                if i == j and row_sizes[i] == col_sizes[j]:
                    A = diagonal_matrix(row_sizes[i], A)
                else:
                    # Offdiagonal can only be zero
                    A = zero_matrix(row_sizes[i], col_sizes[j])
                #else:
                #    A = 0
            # The converted block
            blocks[i, j] = A
        # Now every block is a matrix/number and we can make a monolithic thing
        bmat = block_mat(blocks)

        assert all(is_petsc_mat(block) or is_number(block)
                   for block in bmat.blocks.flatten())
        
        # Opt out of monolithic
        if not algorithm:
            set_lg_map(bmat)
            return bmat
        
        # Monolithic via numpy (fast)
        # Convert to numpy
        array = block_mat_to_numpy(bmat)
        # Constuct from numpy
        bmat = numpy_to_petsc(array)
        set_lg_map(bmat)

        return bmat

    # Try with a composite
    return collapse(bmat)
コード例 #7
0
 def matvec(self, b):
     '''Reduce'''
     reshaped = []
     for indices in self.mapping:
         if len(indices) == 1:
             reshaped.append(b.blocks[indices[0]])
         else:
             reshaped.append(PETScVector(as_petsc_nest(block_vec([b.blocks[idx] for idx in indices]))))
     return block_vec(reshaped) if len(reshaped) > 1 else reshaped[0]
コード例 #8
0
ファイル: block_utils.py プロジェクト: HomaiRS/fenics_ii
            def __matvec__(self, b, A=bmat, indices=index_set, work=work):
                for index in indices:
                    # Exact apply assign
                    bj = PETScVector(as_backend_type(b).vec().getSubVector(index))
                    xj = A*bj
                    work[index] = xj.get_local()

                x = self.create_vec()
                x.set_local(work)
                return x
コード例 #9
0
ファイル: matrix.py プロジェクト: MiroK/cbc.block
 def create_vec(self, dim=1):
     from dolfin import PETScVector
     if self.transposed:
         dim = 1 - dim
     if dim == 0:
         m = self.M.createVecRight()
     elif dim == 1:
         m = self.M.createVecLeft()
     else:
         raise ValueError('dim must be <= 1')
     return PETScVector(m)
コード例 #10
0
ファイル: block_utils.py プロジェクト: HomaiRS/fenics_ii
    def matvec(self, b):
        '''Reduce'''
        # print type(b), b.size(), self.offsets
        # assert b.size() == self.offsets[-1]

        reduced = []
        for f, l in zip(self.offsets[:-1], self.offsets[1:]):
            if (l - f) == 1:
                reduced.append(b[f])
            else:
                reduced.append(PETScVector(as_petsc_nest(block_vec(b.blocks[f:l]))))
        return block_vec(reduced) if len(reduced) > 1 else reduced[0]
コード例 #11
0
ファイル: test_petsc.py プロジェクト: live-clones/dolfin
def test_vector():
    "Test PETScVector interface"

    prefix = "my_vector_"
    x = PETScVector(MPI.comm_world)
    x.set_options_prefix(prefix)

    assert x.get_options_prefix() == prefix
    x.init(300)
    assert x.get_options_prefix() == prefix
コード例 #12
0
ファイル: test_petsc4py.py プロジェクト: live-clones/dolfin
def test_petsc4py_vector(pushpop_parameters):
    "Test PETScVector <-> petsc4py.PETSc.Vec conversions"
    parameters["linear_algebra_backend"] = "PETSc"

    # Assemble a test matrix
    mesh = UnitSquareMesh(4, 4)
    V = FunctionSpace(mesh, "Lagrange", 1)
    v = TestFunction(V)
    a = v*dx
    b1 = assemble(a)

    # Test conversion dolfin.PETScVector -> petsc4py.PETSc.Vec
    b1 = as_backend_type(b1)
    v1 = b1.vec()

    # Copy and scale vector with petsc4py
    v2 = v1.copy()
    v2.scale(2.0)

    # Test conversion petsc4py.PETSc.Vec  -> PETScVector
    b2 = PETScVector(v2)

    assert (b1.get_local()*2.0 == b2.get_local()).all()
コード例 #13
0
def test_petsc4py_vector(pushpop_parameters):
    "Test PETScVector <-> petsc4py.PETSc.Vec conversions"
    parameters["linear_algebra_backend"] = "PETSc"

    # Assemble a test matrix
    mesh = UnitSquareMesh(4, 4)
    V = FunctionSpace(mesh, "Lagrange", 1)
    v = TestFunction(V)
    a = v * dx
    b1 = assemble(a)

    # Test conversion dolfin.PETScVector -> petsc4py.PETSc.Vec
    b1 = as_backend_type(b1)
    v1 = b1.vec()

    # Copy and scale vector with petsc4py
    v2 = v1.copy()
    v2.scale(2.0)

    # Test conversion petsc4py.PETSc.Vec  -> PETScVector
    b2 = PETScVector(v2)

    assert (b1.get_local() * 2.0 == b2.get_local()).all()
コード例 #14
0
ファイル: convert.py プロジェクト: MiroK/fenics_ii
def numpy_to_petsc(mat):
    '''Build PETScMatrix with array structure'''
    # Dense array to matrix
    if isinstance(mat, np.ndarray):
        if mat.ndim == 1:
            vec = PETSc.Vec().createWithArray(mat)
            vec.assemble()
            return PETScVector(vec)

        return numpy_to_petsc(csr_matrix(mat))
    # Sparse
    A = PETSc.Mat().createAIJ(comm=COMM,
                              size=mat.shape,
                              csr=(mat.indptr, mat.indices, mat.data))
    A.assemble()
    return PETScMatrix(A)
コード例 #15
0
    def __init__(self, energy, alpha, bcs, lb=None, ub=None):

        NonlinearProblem.__init__(self)
        self.energy = energy
        self.alpha = alpha
        self.V = self.alpha.function_space()
        self.denergy = derivative(self.energy, self.alpha,
                                  TestFunction(self.V))
        self.ddenergy = derivative(self.denergy, self.alpha,
                                   TrialFunction(self.V))
        if lb == None:
            lb = interpolate(Constant("0."), self.V)
        if ub == None:
            ub = interpolate(Constant("1."), self.V)
        self.lb = lb
        self.ub = ub
        self.bcs = bcs
        self.b = PETScVector()
        self.A = PETScMatrix()
コード例 #16
0
def test_ref_count(pushpop_parameters):
    "Test petsc4py reference counting"
    parameters["linear_algebra_backend"] = "PETSc"

    mesh = UnitSquareMesh(3, 3)
    V = FunctionSpace(mesh, "P", 1)

    # Check u and x own the vector
    u = Function(V)
    x = as_backend_type(u.vector()).vec()
    assert x.refcount == 2

    # Check decref
    del u
    gc.collect()  # destroy u
    assert x.refcount == 1

    # Check incref
    vec = PETScVector(x)
    assert x.refcount == 2
コード例 #17
0
    def transpmult(self, b):
        '''Unpack'''
        if isinstance(b, (Vector, GenericVector)):
            b = [b]
        else:
            b = b.blocks
            
        n = sum(map(len, self.index_sets))
        unpacked = [0]*n
        for bi, block_dofs, blocks in zip(b, self.index_sets, self.mapping):
            if len(blocks) == 1:
                unpacked[blocks[0]] = bi
            else:
                x_petsc = as_backend_type(bi).vec()
                subvecs = [PETScVector(x_petsc.getSubVector(dofs)) for dofs in block_dofs]
                for j, subvec in zip(blocks, subvecs):
                    unpacked[j] = subvec

                    
        return block_vec(unpacked)
コード例 #18
0
ファイル: block_utils.py プロジェクト: HomaiRS/fenics_ii
    def transpmult(self, b):
        '''Unpack'''
        if isinstance(b, (Vector, GenericVector)):
            b = [b]
        else:
            b = b.blocks
        n = len(b)
        assert n == len(self.index_sets), self.index_sets

        unpacked = []
        for bi, iset in zip(b, self.index_sets):
            if len(iset) == 0:
                unpacked.append(bi)
            else:
                x_petsc = as_backend_type(bi).vec()

                subvecs = map(lambda indices, x=x_petsc: PETScVector(x.getSubVector(indices)),
                              iset)

                unpacked.extend(subvecs)
        return block_vec(unpacked)
コード例 #19
0
def test_options_prefix(pushpop_parameters):
    "Test set/get prefix option for PETSc objects"

    def run_test(A, init_function):
        # Prefix
        prefix = "test_foo_"

        # Set prefix
        A.set_options_prefix(prefix)

        # Get prefix (should be empty since vector has been initialised)
        # assert not A.get_options_prefix()

        # Initialise vector
        init_function(A)

        # Check prefix
        assert A.get_options_prefix() == prefix

        # Try changing prefix post-intialisation (should throw error)
        # with pytest.raises(RuntimeError):
        #     A.set_options_prefix("test")

    # Test vector
    def init_vector(x):
        x.init(100)

    x = PETScVector(MPI.comm_world)
    run_test(x, init_vector)

    # Test matrix
    def init_matrix(A):
        mesh = UnitSquareMesh(12, 12)
        V = FunctionSpace(mesh, "Lagrange", 1)
        u, v = TrialFunction(V), TestFunction(V)
        assemble(u * v * dx, tensor=A)

    A = PETScMatrix()
    run_test(A, init_matrix)
コード例 #20
0
def eigensolve(A, B, V, params, small_enough=5000):
    '''Solve A*u = lB*u returning the eigenpairs'''
    # Do small enought exacty
    if V.dim() < small_enough:
        print 'Using scipy as dim(V) is %d' % V.dim()
        return exact_eigensolve(A, B, V, params)
    
    # NOTE: you configure this from command line
    # Here are some defaults
    my_params = {'-eps_tol': 1E-6,         # cvrg tolerance
                 '-eps_max_it': 10000,      
                 '-eps_smallest_magnitude': 'none',  # which eigenvalues
                 '-eps_nev': 3,                      # How many
                 '-eps_monitor': 'none',
                 '-eps_type': 'krylovschur'}
    
    for key, value in my_params.items():
        if key not in params:
            params[key] = value

    opts = PETSc.Options()
    for key, value in params.items():
        opts.setValue(key, None if value == 'none' else value)

    # Setup the eigensolver
    E = SLEPc.EPS().create()
    E.setOperators(A ,B)
    # type is -eps_type
    E.setProblemType(SLEPc.EPS.ProblemType.GHEP)
    
    # Using shift and invert spectral transformation with zero shift?
    # FIXME: spectral transform and precond to accelerate things

    if True:
        ST = E.getST()
        ST.setType('sinvert')
        KSP = ST.getKSP()
        KSP.setType('cg')
        PC = KSP.getPC()
        PC.setType('hypre')

        ksp_params = {'-st_ksp_rtol': 1E-8,         # cvrg tolerance
                      '-st_ksp_monitor_true_residual': 'none'}
    
        for key, value in ksp_params.items():
            opts.setValue(key, None if value == 'none' else value)

        # PC.setType('lu')
        # PC.setFactorSolverPackage('mumps')

        KSP.setFromOptions()
        
    E.setFromOptions()
    E.solve()

    its = E.getIterationNumber()
    nconv = E.getConverged()
    assert nconv > 0

    eigenpairs = []
    for i in range(nconv):
        eigv = A.createVecLeft()
        eigw = E.getEigenpair(i, eigv).real

        eigenpairs.append((eigw, Function(V, PETScVector(eigv))))
    return eigenpairs
コード例 #21
0
ファイル: block_utils.py プロジェクト: fanronghong/fenics_ii
 def mult(self, mat, x, y):
     '''y = A*x'''
     y *= 0
     x_bvec = PETScVector(x)
     y_bvec = self.A * x_bvec
     y.axpy(1., as_petsc(y_bvec))
コード例 #22
0
ファイル: block_utils.py プロジェクト: fanronghong/fenics_ii
 def create_vec(self, dim):
     if dim == 0:
         vec = self.A.createVecLeft()
     else:
         vec = self.A.createVecRight()
     return PETScVector(vec)
コード例 #23
0
ファイル: matrix.py プロジェクト: MiroK/cbc.block
 def create_vec(self, dim=1):
     from dolfin import PETScVector
     if dim > 1:
         raise ValueError('dim must be <= 1')
     return PETScVector(self.v.copy())
def test_poisson(k):
    # Polynomial order and mesh resolution
    nx_list = [4, 8, 16]

    # Error list
    error_u_l2, error_u_h1 = [], []

    for nx in nx_list:
        mesh = UnitSquareMesh(nx, nx)

        # Define FunctionSpaces and functions
        V = FunctionSpace(mesh, "DG", k)
        Vbar = FunctionSpace(mesh,
                             FiniteElement("CG", mesh.ufl_cell(), k)["facet"])

        u_soln = Expression("sin(pi*x[0])*sin(pi*x[1])",
                            degree=k + 1,
                            domain=mesh)
        f = Expression("2*pi*pi*sin(pi*x[0])*sin(pi*x[1])", degree=k + 1)
        u, v = Function(V), TestFunction(V)
        ubar, vbar = Function(Vbar), TestFunction(Vbar)

        n = FacetNormal(mesh)
        h = CellDiameter(mesh)
        alpha = Constant(6 * k * k)
        penalty = alpha / h

        def facet_integral(integrand):
            return integrand('-') * dS + integrand('+') * dS + integrand * ds

        u_flux = ubar
        F_v_flux = grad(u) + penalty * outer(u_flux - u, n)

        residual_local = inner(grad(u), grad(v)) * dx
        residual_local += facet_integral(inner(outer(u_flux - u, n), grad(v)))
        residual_local -= facet_integral(inner(F_v_flux, outer(v, n)))
        residual_local -= f * v * dx

        residual_global = facet_integral(inner(F_v_flux, outer(vbar, n)))

        a_ll = derivative(residual_local, u)
        a_lg = derivative(residual_local, ubar)
        a_gl = derivative(residual_global, u)
        a_gg = derivative(residual_global, ubar)

        l_l = -residual_local
        l_g = -residual_global

        bcs = [DirichletBC(Vbar, u_soln, "on_boundary")]

        # Initialize static condensation assembler
        assembler = AssemblerStaticCondensation(a_ll, a_lg, a_gl, a_gg, l_l,
                                                l_g, bcs)

        A_g, b_g = PETScMatrix(), PETScVector()
        assembler.assemble_global_lhs(A_g)
        assembler.assemble_global_rhs(b_g)

        for bc in bcs:
            bc.apply(A_g, b_g)

        solver = PETScKrylovSolver()
        solver.set_operator(A_g)
        PETScOptions.set("ksp_type", "preonly")
        PETScOptions.set("pc_type", "lu")
        PETScOptions.set("pc_factor_mat_solver_type", "mumps")
        solver.set_from_options()

        solver.solve(ubar.vector(), b_g)
        assembler.backsubstitute(ubar._cpp_object, u._cpp_object)

        # Compute L2 and H1 norms
        e_u_l2 = assemble((u - u_soln)**2 * dx)**0.5
        e_u_h1 = assemble(grad(u - u_soln)**2 * dx)**0.5

        if mesh.mpi_comm().rank == 0:
            error_u_l2.append(e_u_l2)
            error_u_h1.append(e_u_h1)

    if mesh.mpi_comm().rank == 0:
        iterator_list = [1.0 / float(nx) for nx in nx_list]
        conv_u_l2 = compute_convergence(iterator_list, error_u_l2)
        conv_u_h1 = compute_convergence(iterator_list, error_u_h1)

        # Optimal rate of k + 1 - tolerance
        assert np.all(conv_u_l2 >= (k + 1.0 - 0.15))
        # Optimal rate of k - tolerance
        assert np.all(conv_u_h1 >= (k - 0.1))
コード例 #25
0
ファイル: time_stepping.py プロジェクト: nadia-el/RBniCS
 def _residual_vector_assemble(self,
                               residual_form: ParametrizedTensorFactory,
                               petsc_residual: PETSc.Vec):
     self.residual_vector = PETScVector(petsc_residual)
     evaluate(residual_form, tensor=self.residual_vector)
コード例 #26
0
ファイル: solvers.py プロジェクト: shumilin88/muflon
    def solve(self):
        """
        Perform one solution step (in time).
        """
        begin("Cahn-Hilliard step")
        self.iters["CH"][-1] = self.data["solver"]["CH"]["nln"].solve(
            self.data["problem_ch"], self.data["sol_ch"].vector())[0]
        self.iters["CH"][0] += self.iters["CH"][-1]
        end()

        begin("Navier-Stokes step")
        # Update stabilization terms
        if self.data["model"].parameters["semi"]["sdstab"]:
            self.data["model"]._update_sd_stab_parameter()

        pcd_assembler = self.data.get("pcd_assembler", None)
        if pcd_assembler:
            # Symmetric assembly of the linear system
            A, b = PETScMatrix(self.comm()), PETScVector(self.comm())
            pcd_assembler.system_matrix(A)
            pcd_assembler.rhs_vector(b)
        else:
            # Standard assembly of the linear system
            A = assemble(self.data["forms"]["lin"]["lhs"])
            b = assemble(self.data["forms"]["lin"]["rhs"])
            for bc in self.data["bcs_ns"]:
                bc.apply(A, b)

        if self._flags["fix_p"]:
            # Attach null space to PETSc matrix
            as_backend_type(A).set_nullspace(self.data["null_space"])
            # Orthogonalize RHS vector b with respect to the null space
            self.data["null_space"].orthogonalize(b)

        if pcd_assembler:
            # Symmetric assembly of the preconditioner
            P = PETScMatrix(self.comm())
            pcd_assembler.pc_matrix(P)
            # FIXME: Should we attach the null space also to preconditioner?
            #        Probably not as 'set_nullspace' is related to KSP (not PC).
            # if P.empty():
            #     P = A
            # else:
            #     as_backend_type(P).set_nullspace(self.data["null_space"])
            P = A if P.empty() else P
            # Standard assembly of the preconditioner matrix
            # if self.data["forms"]["pcd"]["a_pc"] is not None:
            #     P = assemble(self.data["forms"]["pcd"]["a_pc"])
            #     for bc in self.data["bcs_ns"]:
            #         bc.apply(P)
            # else:
            #     P = A
            self.data["solver"]["NS"].set_operators(A, P)
            if not self._flags["init_pcd_called"]:  # only one call is allowed
                self.data["solver"]["NS"].init_pcd(pcd_assembler)
                self._flags["init_pcd_called"] = True
        else:
            # FIXME: Here we assume that LU solver is used
            assert self.data["solver"]["NS"].parameter_type() == 'lu_solver'
            self.data["solver"]["NS"].set_operator(A)
            # NOTE: Preconditioner matrix can't be set for LUSolver.

        self.iters["NS"][-1] = \
          self.data["solver"]["NS"].solve(self.data["sol_ns"].vector(), b)
        info("Navier-Stokes solver finished in {} iterations".format(
            self.iters["NS"][-1]))
        self.iters["NS"][0] += self.iters["NS"][-1]

        if self._flags["fix_p"]:
            self._calibrate_pressure(self.data["sol_ns"],
                                     self.data["null_fcn"])
        end()
コード例 #27
0
 def residual(self, snes, x, b):
     self.update_x(x)
     b_wrap = PETScVector(b)
     self.ass.assemble(b_wrap, self.alpha_dvec)
コード例 #28
0
    def get_eigenvector(self, i):
        assert i < self.eigen_solver.get_number_converged()

        # Initialize eigenvectors
        real_vector = PETScVector()
        imag_vector = PETScVector()
        self.A.init_vector(real_vector, 0)
        self.A.init_vector(imag_vector, 0)

        # Condense input vectors
        if hasattr(self, "_is"):  # there were Dirichlet BCs
            condensed_real_vector = PETScVector(real_vector.vec().getSubVector(
                self._is))
            condensed_imag_vector = PETScVector(imag_vector.vec().getSubVector(
                self._is))
        else:
            condensed_real_vector = real_vector
            condensed_imag_vector = imag_vector

        # Get eigenpairs
        if dolfin_version.startswith(
                "2018.1"):  # TODO remove when 2018.2.0 is released
            # Helper functions
            cpp_code = """
                #include <pybind11/pybind11.h>
                #include <dolfin/la/PETScVector.h>
                #include <dolfin/la/SLEPcEigenSolver.h>
                
                void get_eigen_pair(std::shared_ptr<dolfin::SLEPcEigenSolver> eigen_solver, std::shared_ptr<dolfin::PETScVector> condensed_real_vector, std::shared_ptr<dolfin::PETScVector> condensed_imag_vector, std::size_t i)
                {
                    const PetscInt ii = static_cast<PetscInt>(i);
                    double real_value;
                    double imag_value;
                    EPSGetEigenpair(eigen_solver->eps(), ii, &real_value, &imag_value, condensed_real_vector->vec(), condensed_imag_vector->vec());
                }
                
                PYBIND11_MODULE(SIGNATURE, m)
                {
                    m.def("get_eigen_pair", &get_eigen_pair);
                }
            """

            get_eigen_pair = compile_cpp_code(cpp_code).get_eigen_pair
            get_eigen_pair(self.eigen_solver, condensed_real_vector,
                           condensed_imag_vector, i)
        else:
            self.eigen_solver.get_eigenpair(condensed_real_vector,
                                            condensed_imag_vector, i)

        # Restore input vectors
        if hasattr(self, "_is"):  # there were Dirichlet BCs
            real_vector.vec().restoreSubVector(self._is,
                                               condensed_real_vector.vec())
            imag_vector.vec().restoreSubVector(self._is,
                                               condensed_imag_vector.vec())

        # Return as Function
        return (Function(self.V, real_vector), Function(self.V, imag_vector))
コード例 #29
0
ファイル: time_stepping.py プロジェクト: nadia-el/RBniCS
 def _residual_vector_assemble(self, residual_form: Form,
                               petsc_residual: PETSc.Vec):
     self.residual_vector = PETScVector(petsc_residual)
     assemble(residual_form, tensor=self.residual_vector)
コード例 #30
0
NeumanBoundary().mark(boundaries, 1)

# Define outer surface measure aware of Dirichlet and Neumann boundaries
ds = Measure('ds', domain=mesh, subdomain_data=boundaries)

# Define variational problem
u = TrialFunction(V)
d = u.geometric_dimension()
v = TestFunction(V)
f = Constant((0, 0, 0))
T = Constant((10**3, 0, 0))
a = inner(sigma(u), epsilon(v)) * dx
L = dot(f, v) * dx + dot(T, v) * ds(1)

A = PETScMatrix()
b = PETScVector()
assemble_system(a, L, bc, A_tensor=A, b_tensor=b)

A = A.mat()
b = b.vec()
print('problem size: ', b.getSize())
# =========================================================================

# Construct the alist for systems on levels from fine to coarse
# construct the transfer operators first
ruse = [None] * (nl - 1)
Alist = [None] * (nl)

ruse[0] = Mat()
puse[0].transpose(ruse[0])
Alist[0] = A
コード例 #31
0
ファイル: time_stepping.py プロジェクト: nadia-el/RBniCS
 def _residual_vector_assemble(self, residual_vector_input: GenericVector,
                               petsc_residual: PETSc.Vec):
     self.residual_vector = PETScVector(petsc_residual)
     to_petsc4py(residual_vector_input).swap(petsc_residual)
コード例 #32
0
def boundary_D(x, on_boundary):

    return on_boundary and (near(x[0], 0, tol) or near(x[0], 1.0, tol))


bc = DirichletBC(V, u_D, boundary_D)
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2) \
                 + pow(x[2] - 0.5, 2)) / 0.02)", degree=6)
g = Expression("sin(5.0*x[0])*sin(5.0*x[1])", degree=6)
a = dot(grad(u), grad(v)) * dx
L = f * v * dx + g * v * ds
A = PETScMatrix()
b = PETScVector()
assemble_system(a, L, bc, A_tensor=A, b_tensor=b)

A = A.mat()
b = b.vec()

# =========================================================================

# Construct the alist for systems on levels from fine to coarse
# construct the transfer operators first
ruse = [None] * (nl - 1)
Alist = [None] * (nl)

ruse[0] = Mat()
puse[0].transpose(ruse[0])
Alist[0] = A