コード例 #1
0
 def __init__(self, model, args, name='Alice'):
     super(LstmAgent, self).__init__()
     self.model = model
     self.args = args
     self.name = name
     self.human = False
     self.domain = domain.get_domain(args.domain)
コード例 #2
0
def gather_information(name, url):
    domain = get_domain(url)
    ipaddress = get_address(domain)
    nmap = get_nmap(domain, '-F')
    robots = get_robots(url)
    whois = get_whois(domain)
    create_report(name, url, domain, ipaddress, nmap, robots, whois)
コード例 #3
0
 def __init__(self, agents, args):
     # for now we only suppport dialog of 2 agents
     assert len(agents) == 2
     self.agents = agents
     self.args = args
     self.domain = domain.get_domain(args.domain)
     self.metrics = MetricsContainer()
     self._register_metrics()
コード例 #4
0
 def __init__(self, agents, args):
     # for now we only suppport dialog of 2 agents
     assert len(agents) == 2
     self.agents = agents
     self.args = args
     self.domain = domain.get_domain(args.domain)
     self.metrics = MetricsContainer()
     self._register_metrics()
コード例 #5
0
def main():
    parser = argparse.ArgumentParser(description='Negotiator')
    parser.add_argument('--dataset',
                        type=str,
                        default='./data/negotiate/val.txt',
                        help='location of the dataset')
    parser.add_argument('--model_file', type=str, help='model file')
    parser.add_argument('--smart_ai',
                        action='store_true',
                        default=False,
                        help='to use rollouts')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('--temperature',
                        type=float,
                        default=1.0,
                        help='temperature')
    parser.add_argument('--domain',
                        type=str,
                        default='object_division',
                        help='domain for the dialogue')
    parser.add_argument('--log_file', type=str, default='', help='log file')
    args = parser.parse_args()

    utils.set_seed(args.seed)

    model = utils.load_model(args.model_file)
    ai = LstmAgent(model, args)
    logger = DialogLogger(verbose=True, log_file=args.log_file)
    domain = get_domain(args.domain)

    score_func = rollout if args.smart_ai else likelihood

    dataset, sents = read_dataset(args.dataset)
    ranks, n, k = 0, 0, 0
    for ctx, dialog in dataset:
        start_time = time.time()
        ai.feed_context(ctx)
        for sent, you in dialog:
            if you:
                rank = compute_rank(sent, sents, ai, domain, args.temperature,
                                    score_func)
                # Compute lang_h for the groundtruth sentence
                enc = ai._encode(sent, ai.model.word_dict)
                _, ai.lang_h, lang_hs = ai.model.score_sent(
                    enc, ai.lang_h, ai.ctx_h, args.temperature)
                ai.lang_hs.append(lang_hs)
                ai.words.append(ai.model.word2var('YOU:'))
                ai.words.append(Variable(enc))
                ranks += rank
                n += 1
            else:
                ai.read(sent)
        k += 1
        time_elapsed = time.time() - start_time
        logger.dump('dialogue %d | avg rank %.3f | raw %d/%d | time %.3f' %
                    (k, 1. * ranks / n, ranks, n, time_elapsed))

    logger.dump('final avg rank %.3f' % (1. * ranks / n))
コード例 #6
0
ファイル: spider.py プロジェクト: AAAwesomer/CRAWL
 def __init__(self, cfg):
     Spider.config = cfg
     Spider.project_name = Spider.config['project']
     Spider.base_url = Spider.config['base_url']
     Spider.domain_name = get_domain(Spider.base_url)
     Spider.queue_file = Spider.config['queue']
     Spider.crawled_file = Spider.config['crawled']
     self.boot()
     self.crawl_page('Spider one', Spider.base_url)
コード例 #7
0
 def __init__(self, sess, model, use_rollouts=False):
     self.sess = sess
     self.model = model
     self.all_rewards = []
     self.domain = domain.get_domain('object_division')
     self.use_rollouts = use_rollouts  # only used for generation
     # params for rollouts
     self.ncandidate = 10
     self.nrollout = 5
     self.rollout_len = 100
コード例 #8
0
    def __init__(self, word_dict, item_dict, context_dict, count_dict, args):
        super(LatentClusteringPredictionModel, self).__init__()

        self.lang_model = utils.load_model(args.lang_model_file)
        self.lang_model.eval()

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.count_dict = count_dict
        self.args = args

        self.ctx_encoder = MlpContextEncoder(len(self.context_dict),
                                             domain.input_length(),
                                             args.nembed_ctx, args.nhid_ctx,
                                             args.dropout, args.init_range,
                                             False)

        self.word_embed = nn.Embedding(len(self.word_dict), args.nembed_word)

        self.encoder = nn.GRU(input_size=args.nembed_word,
                              hidden_size=args.nhid_lang,
                              bias=True)

        self.embed2hid = nn.Sequential(
            nn.Linear(args.nhid_lang + args.nhid_lang + args.nhid_ctx,
                      self.args.nhid_lang), nn.Tanh())

        self.latent_bottleneck = ShardedLatentBottleneckModule(
            num_shards=len(count_dict),
            num_clusters=self.lang_model.cluster_model.args.num_clusters,
            input_size=args.nhid_lang,
            output_size=self.lang_model.cluster_model.args.nhid_cluster,
            args=args)

        # copy lat vars from the cluster model
        self.latent_bottleneck.latent_vars.weight.data.copy_(
            self.lang_model.cluster_model.latent_bottleneck.latent_vars.weight.
            data)

        self.memory = RecurrentUnit(
            input_size=args.nhid_lang,
            hidden_size=self.lang_model.cluster_model.args.nhid_cluster,
            args=args)

        self.dropout = nn.Dropout(args.dropout)

        self.kldiv = nn.KLDivLoss(reduction='sum')

        # init
        self.word_embed.weight.data.uniform_(-args.init_range, args.init_range)
        init_rnn(self.encoder, args.init_range)
        init_cont(self.embed2hid, args.init_range)
コード例 #9
0
    def __init__(self, word_dict, item_dict, context_dict, count_dict, args):
        super(LatentClusteringLanguageModel, self).__init__()

        self.cluster_model = utils.load_model(args.cluster_model_file)
        self.cluster_model.eval()

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.count_dict = count_dict
        self.args = args

        self.word_embed = nn.Embedding(len(self.word_dict), args.nembed_word)

        self.encoder = nn.GRU(input_size=args.nembed_word,
                              hidden_size=args.nhid_lang,
                              bias=True)

        self.hid2output = nn.Sequential(
            nn.Linear(args.nhid_lang, args.nembed_word),
            nn.Dropout(args.dropout))

        self.cond2input = nn.Linear(
            args.nhid_lang + self.cluster_model.args.nhid_cluster,
            args.nembed_word)

        self.decoder_reader = nn.GRU(input_size=args.nembed_word,
                                     hidden_size=args.nhid_lang,
                                     bias=True)

        self.decoder_writer = nn.GRUCell(input_size=args.nembed_word,
                                         hidden_size=args.nhid_lang,
                                         bias=True)

        # tie the weights between reader and writer
        self.decoder_writer.weight_ih = self.decoder_reader.weight_ih_l0
        self.decoder_writer.weight_hh = self.decoder_reader.weight_hh_l0
        self.decoder_writer.bias_ih = self.decoder_reader.bias_ih_l0
        self.decoder_writer.bias_hh = self.decoder_reader.bias_hh_l0

        self.dropout = nn.Dropout(args.dropout)

        self.special_token_mask = make_mask(len(word_dict), [
            word_dict.get_idx(w) for w in ['<unk>', 'YOU:', 'THEM:', '<pad>']
        ])

        # init
        self.word_embed.weight.data.uniform_(-args.init_range, args.init_range)
        init_rnn(self.decoder_reader, args.init_range)
        init_linear(self.cond2input, args.init_range)
        init_cont(self.hid2output, args.init_range)
        init_rnn(self.encoder, args.init_range)
コード例 #10
0
def main():
    parser = argparse.ArgumentParser(description='Negotiator')
    parser.add_argument('--dataset', type=str, default='./data/negotiate/val.txt',
        help='location of the dataset')
    parser.add_argument('--model_file', type=str,
        help='model file')
    parser.add_argument('--smart_ai', action='store_true', default=False,
        help='to use rollouts')
    parser.add_argument('--seed', type=int, default=1,
        help='random seed')
    parser.add_argument('--temperature', type=float, default=1.0,
        help='temperature')
    parser.add_argument('--domain', type=str, default='object_division',
        help='domain for the dialogue')
    parser.add_argument('--log_file', type=str, default='',
        help='log file')
    args = parser.parse_args()

    utils.set_seed(args.seed)

    model = utils.load_model(args.model_file)
    ai = LstmAgent(model, args)
    logger = DialogLogger(verbose=True, log_file=args.log_file)
    domain = get_domain(args.domain)

    score_func = rollout if args.smart_ai else likelihood

    dataset, sents = read_dataset(args.dataset)
    ranks, n, k = 0, 0, 0
    for ctx, dialog in dataset:
        start_time = time.time()
        # start new conversation
        ai.feed_context(ctx)
        for sent, you in dialog:
            if you:
                # if it is your turn to say, take the target word and compute its rank
                rank = compute_rank(sent, sents, ai, domain, args.temperature, score_func)
                # compute lang_h for the groundtruth sentence
                enc = ai._encode(sent, ai.model.word_dict)
                _, ai.lang_h, lang_hs = ai.model.score_sent(enc, ai.lang_h, ai.ctx_h, args.temperature)
                # save hidden states and the utterance
                ai.lang_hs.append(lang_hs)
                ai.words.append(ai.model.word2var('YOU:'))
                ai.words.append(Variable(enc))
                ranks += rank
                n += 1
            else:
                ai.read(sent)
        k += 1
        time_elapsed = time.time() - start_time
        logger.dump('dialogue %d | avg rank %.3f | raw %d/%d | time %.3f' % (k, 1. * ranks / n, ranks, n, time_elapsed))

    logger.dump('final avg rank %.3f' % (1. * ranks / n))
コード例 #11
0
 def __init__(self, agents, args, markable_detector,
              markable_detector_corpus):
     # For now we only suppport dialog of 2 agents
     assert len(agents) == 2
     self.agents = agents
     self.args = args
     self.domain = domain.get_domain(args.domain)
     self.metrics = MetricsContainer()
     self._register_metrics()
     self.markable_detector = markable_detector
     self.markable_detector_corpus = markable_detector_corpus
     self.selfplay_markables = {}
     self.selfplay_referents = {}
コード例 #12
0
ファイル: chat.py プロジェクト: mrunzo/end-to-end-negotiator
def main():
    parser = argparse.ArgumentParser(description='chat utility')
    parser.add_argument('--model_file', type=str,
        help='model file')
    parser.add_argument('--domain', type=str, default='object_division',
        help='domain for the dialogue')
    parser.add_argument('--context_file', type=str, default='',
        help='context file')
    parser.add_argument('--temperature', type=float, default=1.0,
        help='temperature')
    parser.add_argument('--num_types', type=int, default=3,
        help='number of object types')
    parser.add_argument('--num_objects', type=int, default=6,
        help='total number of objects')
    parser.add_argument('--max_score', type=int, default=10,
        help='max score per object')
    parser.add_argument('--score_threshold', type=int, default=6,
        help='successful dialog should have more than score_threshold in score')
    parser.add_argument('--seed', type=int, default=1,
        help='random seed')
    parser.add_argument('--smart_ai', action='store_true', default=False,
        help='make AI smart again')
    parser.add_argument('--ai_starts', action='store_true', default=False,
        help='allow AI to start the dialog')
    parser.add_argument('--ref_text', type=str,
        help='file with the reference text')
    args = parser.parse_args()

    utils.set_seed(args.seed)

    human = HumanAgent(domain.get_domain(args.domain))

    alice_ty = LstmRolloutAgent if args.smart_ai else LstmAgent
    ai = alice_ty(utils.load_model(args.model_file), args)


    agents = [ai, human] if args.ai_starts else [human, ai]

    dialog = Dialog(agents, args)
    logger = DialogLogger(verbose=True)
    # either take manually produced contextes, or relay on the ones from the dataset
    if args.context_file == '':
        ctx_gen = ManualContextGenerator(args.num_types, args.num_objects, args.max_score)
    else:
        ctx_gen = ContextGenerator(args.context_file)

    chat = Chat(dialog, ctx_gen, logger)
    chat.run()
コード例 #13
0
def main():
    parser = argparse.ArgumentParser(description='chat utility')
    parser.add_argument('--model_file', type=str,
        help='model file')
    parser.add_argument('--domain', type=str, default='object_division',
        help='domain for the dialogue')
    parser.add_argument('--context_file', type=str, default='',
        help='context file')
    parser.add_argument('--temperature', type=float, default=1.0,
        help='temperature')
    parser.add_argument('--num_types', type=int, default=3,
        help='number of object types')
    parser.add_argument('--num_objects', type=int, default=6,
        help='total number of objects')
    parser.add_argument('--max_score', type=int, default=10,
        help='max score per object')
    parser.add_argument('--score_threshold', type=int, default=6,
        help='successful dialog should have more than score_threshold in score')
    parser.add_argument('--seed', type=int, default=1,
        help='random seed')
    parser.add_argument('--smart_ai', action='store_true', default=False,
        help='make AI smart again')
    parser.add_argument('--ai_starts', action='store_true', default=False,
        help='allow AI to start the dialog')
    parser.add_argument('--ref_text', type=str,
        help='file with the reference text')
    args = parser.parse_args()

    utils.set_seed(args.seed)

    human = HumanAgent(domain.get_domain(args.domain))

    alice_ty = LstmRolloutAgent if args.smart_ai else LstmAgent
    ai = alice_ty(utils.load_model(args.model_file), args)


    agents = [ai, human] if args.ai_starts else [human, ai]

    dialog = Dialog(agents, args)
    logger = DialogLogger(verbose=True)
    if args.context_file == '':
        ctx_gen = ManualContextGenerator(args.num_types, args.num_objects, args.max_score)
    else:
        ctx_gen = ContextGenerator(args.context_file)

    chat = Chat(dialog, ctx_gen, logger)
    chat.run()
コード例 #14
0
def main():
    parser = argparse.ArgumentParser(
        description='A script to compute Pareto efficiency')
    parser.add_argument('--log_file', type=str, default='',
        help='location of the log file')
    parser.add_argument('--domain', type=str, default='object_division',
        help='domain for the dialogue')

    args = parser.parse_args()
    domain = get_domain(args.domain)

    dataset = parse_log(args.log_file, domain)

    avg_agree, avg_can_improve = 0, 0
    avg_score1, avg_score2 = 0, 0
    avg_max_score1, avg_max_score2 = 0, 0
    for cnts, vals1, picks1, vals2, picks2 in dataset:
        if np.min(picks1) == -1 or np.min(picks2) == -1:
            continue
        agree = True
        for p1, p2, n in zip(picks1, picks2, cnts):
            agree = agree and (p1 + p2 == n)
        if not agree:
            continue

        avg_agree += 1
        score1 = compute_score(vals1, picks1)
        score2 = compute_score(vals2, picks2)
        choices = gen_choices(cnts)
        can_improve = False
        for cand1, cand2 in choices:
            cand_score1 = compute_score(vals1, cand1)
            cand_score2 = compute_score(vals2, cand2)
            if (cand_score1 > score1 and cand_score2 >= score2) or (cand_score1 >= score1 and cand_score2 > score2):
                can_improve = True

        avg_score1 += score1
        avg_score2 += score2
        avg_can_improve += int(can_improve)

    print('pareto opt (%%)\t:\t%.2f' %  (100. * (1 - avg_can_improve / avg_agree)))
    print('agree (%%)\t:\t%.2f' % (100. * avg_agree / len(dataset)))
    print('score (all)\t:\t%.2f vs. %.2f' % (
        1. * avg_score1 / len(dataset), 1. * avg_score2 / len(dataset)))
    print('score (agreed)\t:\t%.2f vs. %.2f' % (
        1. * avg_score1 / avg_agree, 1. * avg_score2 / avg_agree))
コード例 #15
0
ファイル: select_model.py プロジェクト: Alab-NII/onecommon
    def __init__(self, word_dict, output_length, args, device):
        super(SelectModel, self).__init__()

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.args = args
        self.device = device
        self.num_ent = domain.num_ent()

        # embedding for words
        self.word_encoder = nn.Embedding(len(self.word_dict), args.nembed_word)

        # context encoder
        if args.rel_ctx_encoder:
            self.ctx_encoder = modules.RelationalContextEncoder(
                domain.num_ent(), domain.dim_ent(), args.rel_hidden,
                args.nembed_ctx, args.dropout, args.init_range, device)
        else:
            self.ctx_encoder = modules.MlpContextEncoder(
                domain.input_length(), args.nembed_ctx, args.dropout,
                args.init_range, device)

        self.dropout = nn.Dropout(args.dropout)

        # a bidirectional selection RNN
        # it will go through input words and generate by the reader hidden states
        # to produce a hidden representation
        self.sel_rnn = nn.GRU(input_size=args.nembed_word,
                              hidden_size=args.nhid_lang,
                              bias=True,
                              bidirectional=True)

        self.sel_encoder = nn.Sequential(
            torch.nn.Linear(2 * args.nhid_lang + args.nembed_ctx,
                            args.nhid_sel), nn.Tanh())

        # selection decoder
        self.sel_decoder = nn.Linear(args.nhid_sel, self.num_ent)

        if self.args.context_only:
            self.sel_encoder = nn.Sequential(
                torch.nn.Linear(args.nembed_ctx, args.nhid_sel), nn.Tanh())
            self.sel_decoder = nn.Linear(args.nhid_sel, self.num_ent)

        self.init_weights()
コード例 #16
0
 def __init__(self, model, args, name='Alice', train=False):
     super(RnnAgent, self).__init__()
     self.model = model
     self.args = args
     self.name = name
     self.human = False
     self.domain = domain.get_domain(args.domain)
     self.train = train
     if train:
         self.model.train()
         self.opt = optim.RMSprop(
         self.model.parameters(),
         lr=args.rl_lr,
         momentum=self.args.momentum)
         self.all_rewards = []
         self.t = 0
     else:
         self.model.eval()
コード例 #17
0
    def __init__(self, word_dict, item_dict, context_dict, count_dict, args):
        super(SelectionModel, self).__init__()

        self.nhid_pos = 32
        self.nhid_speaker = 32
        self.len_cutoff = 10

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.count_dict = count_dict
        self.args = args

        self.word_encoder = nn.Embedding(len(self.word_dict), args.nembed_word)
        self.pos_encoder = nn.Embedding(self.len_cutoff, self.nhid_pos)
        self.speaker_encoder = nn.Embedding(len(self.word_dict),
                                            self.nhid_speaker)
        self.ctx_encoder = MlpContextEncoder(len(self.context_dict),
                                             domain.input_length(),
                                             args.nembed_ctx, args.nhid_ctx,
                                             args.dropout, args.init_range,
                                             args.skip_values)

        self.sel_head = SelectionModule(query_size=args.nhid_ctx,
                                        value_size=args.nembed_word +
                                        self.nhid_pos + self.nhid_speaker,
                                        hidden_size=args.nhid_attn,
                                        selection_size=args.nhid_sel,
                                        num_heads=6,
                                        output_size=len(item_dict),
                                        args=args)

        self.dropout = nn.Dropout(args.dropout)

        # init embeddings
        self.word_encoder.weight.data.uniform_(-self.args.init_range,
                                               self.args.init_range)
        self.pos_encoder.weight.data.uniform_(-self.args.init_range,
                                              self.args.init_range)
        self.speaker_encoder.weight.data.uniform_(-self.args.init_range,
                                                  self.args.init_range)
コード例 #18
0
def print_items(sess, model, count, val, words):
    # to print output choices, we need to find max probable that is in valid set
    my_domain = domain.get_domain('object_division')
    count_w, val_w = model.corpus.context_dict.i2w(
        count[0]), model.corpus.context_dict.i2w(val[0])

    ctx = [
        str(count_w[0]),
        str(val_w[0]),
        str(count_w[1]),
        str(val_w[1]),
        str(count_w[2]),
        str(val_w[2])
    ]
    choices = my_domain.generate_choices(ctx)

    idxs = [model.corpus.item_dict.w2i(c) for c in choices]
    probs = sess.run(
        model.item_softmax, {
            model.ctx_count: count,
            model.ctx_val: val,
            model.inpt: words,
            model.init_lang_state: model.lang_state_one,
        })

    probs = np.array(probs)[:, 0, :]
    probs_arr = []

    for i in range(len(idxs)):
        choice = idxs[i]
        prob_of_choice = 1.
        for j in range(6):
            prob_of_choice *= probs[j][choice[j]]

        probs_arr.append(prob_of_choice)

    best_choce = idxs[np.argmax(probs_arr)]
    items = model.corpus.item_dict.i2w(best_choce)

    for item in items:
        print(item, end=" ")
    print("\n")
コード例 #19
0
    def __init__(self, word_dict, item_dict, context_dict, count_dict, args):
        super(BaselineClusteringModel, self).__init__()

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.count_dict = count_dict
        self.args = args

        self.ctx_encoder = MlpContextEncoder(len(self.context_dict),
                                             domain.input_length(),
                                             args.nembed_ctx, args.nhid_lang,
                                             args.dropout, args.init_range,
                                             False)

        self.word_embed = nn.Embedding(len(self.word_dict), args.nembed_word)

        self.encoder = nn.GRU(input_size=args.nembed_word,
                              hidden_size=args.nhid_lang,
                              bias=True)

        self.latent_bottleneck = ShardedLatentBottleneckModule(
            num_shards=len(count_dict),
            num_clusters=self.args.num_clusters,
            input_size=args.nhid_lang,
            output_size=self.args.nhid_cluster,
            args=args)

        self.dropout = nn.Dropout(args.dropout)

        self.decoder_reader = nn.GRU(input_size=args.nembed_word,
                                     hidden_size=args.nhid_lang,
                                     bias=True)

        self.decoder_writer = nn.GRUCell(input_size=args.nembed_word,
                                         hidden_size=args.nhid_lang,
                                         bias=True)

        self.cond2input = nn.Linear(args.nhid_cluster, args.nembed_word)

        self.hid2output = nn.Sequential(
            nn.Linear(args.nhid_lang, args.nembed_word),
            nn.Dropout(args.dropout))

        self.memory = RecurrentUnit(input_size=args.nhid_lang,
                                    hidden_size=args.nhid_lang,
                                    args=args)

        # tie the weights between reader and writer
        self.decoder_writer.weight_ih = self.decoder_reader.weight_ih_l0
        self.decoder_writer.weight_hh = self.decoder_reader.weight_hh_l0
        self.decoder_writer.bias_ih = self.decoder_reader.bias_ih_l0
        self.decoder_writer.bias_hh = self.decoder_reader.bias_hh_l0

        self.special_token_mask = make_mask(len(word_dict), [
            word_dict.get_idx(w) for w in ['<unk>', 'YOU:', 'THEM:', '<pad>']
        ])

        # init
        self.word_embed.weight.data.uniform_(-args.init_range, args.init_range)
        init_rnn(self.encoder, args.init_range)
        init_rnn(self.decoder_reader, args.init_range)
        init_linear(self.cond2input, args.init_range)
        init_cont(self.hid2output, args.init_range)
コード例 #20
0
    def __init__(self, word_dict, item_dict, context_dict, output_length, args,
                 device_id):
        super(DialogModel, self).__init__(device_id)

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.args = args

        # embedding for words
        self.word_encoder = nn.Embedding(len(self.word_dict), args.nembed_word)

        # context encoder
        ctx_encoder_ty = modules.RnnContextEncoder if args.rnn_ctx_encoder \
            else modules.MlpContextEncoder
        self.ctx_encoder = ctx_encoder_ty(len(self.context_dict),
                                          domain.input_length(),
                                          args.nembed_ctx, args.nhid_ctx,
                                          args.init_range, device_id)

        # a reader RNN, to encode words
        self.reader = nn.GRU(input_size=args.nhid_ctx + args.nembed_word,
                             hidden_size=args.nhid_lang,
                             bias=True)
        self.decoder = nn.Linear(args.nhid_lang, args.nembed_word)
        # a writer, a RNNCell that will be used to generate utterances
        self.writer = nn.GRUCell(input_size=args.nhid_ctx + args.nembed_word,
                                 hidden_size=args.nhid_lang,
                                 bias=True)

        # tie the weights of reader and writer
        self.writer.weight_ih = self.reader.weight_ih_l0
        self.writer.weight_hh = self.reader.weight_hh_l0
        self.writer.bias_ih = self.reader.bias_ih_l0
        self.writer.bias_hh = self.reader.bias_hh_l0

        self.dropout = nn.Dropout(args.dropout)

        # a bidirectional selection RNN
        # it will go through input words and generate by the reader hidden states
        # to produce a hidden representation
        self.sel_rnn = nn.GRU(input_size=args.nhid_lang + args.nembed_word,
                              hidden_size=args.nhid_attn,
                              bias=True,
                              bidirectional=True)

        # mask for disabling special tokens when generating sentences
        self.special_token_mask = torch.FloatTensor(len(self.word_dict))

        # attention to combine selection hidden states
        self.attn = nn.Sequential(
            torch.nn.Linear(2 * args.nhid_attn, args.nhid_attn), nn.Tanh(),
            torch.nn.Linear(args.nhid_attn, 1))

        # selection encoder, takes attention output and context hidden and combines them
        self.sel_encoder = nn.Sequential(
            torch.nn.Linear(2 * args.nhid_attn + args.nhid_ctx, args.nhid_sel),
            nn.Tanh())
        # selection decoders, one per each item
        self.sel_decoders = nn.ModuleList()
        for i in range(output_length):
            self.sel_decoders.append(
                nn.Linear(args.nhid_sel, len(self.item_dict)))

        self.init_weights()

        # fill in the mask
        for i in range(len(self.word_dict)):
            w = self.word_dict.get_word(i)
            special = domain.item_pattern.match(w) or w in ('<unk>', 'YOU:',
                                                            'THEM:', '<pad>')
            self.special_token_mask[i] = -999 if special else 0.0

        self.special_token_mask = self.to_device(self.special_token_mask)
コード例 #21
0
    def __init__(self, word_dict, item_dict, context_dict, count_dict, args):
        super(LatentClusteringModel, self).__init__()

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.count_dict = count_dict
        self.args = args

        self.ctx_encoder = MlpContextEncoder(len(self.context_dict),
                                             domain.input_length(),
                                             args.nembed_ctx, args.nhid_ctx,
                                             args.dropout, args.init_range,
                                             args.skip_values)

        self.word_embed = nn.Embedding(len(self.word_dict), args.nembed_word)

        self.hid2output = nn.Sequential(
            nn.Linear(args.nhid_lang, args.nembed_word),
            nn.Dropout(args.dropout))

        self.mem2input = nn.Linear(args.nhid_lang, args.nembed_word)

        self.encoder = nn.GRU(input_size=args.nembed_word,
                              hidden_size=args.nhid_lang,
                              bias=True)

        self.embed2hid = nn.Sequential(
            nn.Linear(args.nhid_lang + args.nhid_lang + args.nhid_ctx,
                      args.nhid_cluster), nn.Tanh())

        self.decoder_reader = nn.GRU(input_size=args.nembed_word,
                                     hidden_size=args.nhid_lang,
                                     bias=True)

        self.decoder_writer = nn.GRUCell(input_size=args.nembed_word,
                                         hidden_size=args.nhid_lang,
                                         bias=True)

        # tie the weights between reader and writer
        self.decoder_writer.weight_ih = self.decoder_reader.weight_ih_l0
        self.decoder_writer.weight_hh = self.decoder_reader.weight_hh_l0
        self.decoder_writer.bias_ih = self.decoder_reader.bias_ih_l0
        self.decoder_writer.bias_hh = self.decoder_reader.bias_hh_l0

        self.latent_bottleneck = ShardedLatentBottleneckModule(
            num_shards=len(count_dict),
            num_clusters=args.num_clusters,
            input_size=args.nhid_lang,
            output_size=args.nhid_cluster,
            args=args)

        self.memory = nn.GRUCell(input_size=args.nhid_cluster,
                                 hidden_size=args.nhid_lang,
                                 bias=True)

        self.dropout = nn.Dropout(args.dropout)

        self.selection = SimpleSeparateSelectionModule(
            input_size=args.nhid_cluster,
            hidden_size=args.nhid_sel,
            output_size=len(item_dict),
            args=args)

        # init
        self.word_embed.weight.data.uniform_(-args.init_range, args.init_range)
        init_rnn(self.encoder, args.init_range)
        init_rnn(self.decoder_reader, args.init_range)
        init_rnn_cell(self.memory, args.init_range)
        init_linear(self.mem2input, args.init_range)
        init_cont(self.hid2output, args.init_range)
        init_cont(self.embed2hid, args.init_range)
コード例 #22
0
    def __init__(self, word_dict, args):
        super(RnnReferenceModel, self).__init__()

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.args = args
        self.num_ent = domain.num_ent()

        # define modules:
        self.word_embed = nn.Embedding(len(self.word_dict), args.nembed_word)

        ctx_encoder_ty = models.get_ctx_encoder_type(args.ctx_encoder_type)
        self.ctx_encoder = ctx_encoder_ty(domain, args)

        self.reader = nn.GRU(input_size=args.nembed_word,
                             hidden_size=args.nhid_lang,
                             bias=True)

        self.writer = nn.GRUCell(input_size=args.nembed_word,
                                 hidden_size=args.nhid_lang,
                                 bias=True)

        self.hid2output = nn.Sequential(
            nn.Linear(args.nhid_lang + args.nembed_ctx, args.nembed_word),
            nn.Tanh(),
            nn.Dropout(args.dropout),
        )

        if args.share_attn:
            self.attn = nn.Sequential(
                nn.Linear(args.nhid_lang + args.nembed_ctx, args.nhid_attn),
                nn.Tanh(), nn.Dropout(args.dropout),
                torch.nn.Linear(args.nhid_attn, args.nhid_attn), nn.Tanh(),
                nn.Dropout(args.dropout), torch.nn.Linear(args.nhid_attn, 1))
        else:
            self.attn = nn.Sequential(
                nn.Linear(args.nhid_lang + args.nembed_ctx, args.nhid_sel),
                nn.Tanh(), nn.Dropout(args.dropout))
            self.lang_attn = nn.Sequential(
                torch.nn.Linear(args.nhid_sel, args.nhid_attn), nn.Tanh(),
                nn.Dropout(args.dropout), torch.nn.Linear(args.nhid_attn, 1))
            self.sel_attn = nn.Sequential(
                torch.nn.Linear(args.nhid_sel, args.nhid_sel), nn.Tanh(),
                nn.Dropout(args.dropout), torch.nn.Linear(args.nhid_sel, 1))
            self.ref_attn = nn.Sequential(
                torch.nn.Linear(args.nhid_sel, args.nhid_sel), nn.Tanh(),
                nn.Dropout(args.dropout), torch.nn.Linear(args.nhid_sel, 1))

        # tie the weights between reader and writer
        self.writer.weight_ih = self.reader.weight_ih_l0
        self.writer.weight_hh = self.reader.weight_hh_l0
        self.writer.bias_ih = self.reader.bias_ih_l0
        self.writer.bias_hh = self.reader.bias_hh_l0

        self.dropout = nn.Dropout(args.dropout)

        # mask for disabling special tokens when generating sentences
        self.special_token_mask = make_mask(len(word_dict), [
            word_dict.get_idx(w) for w in ['<unk>', 'YOU:', 'THEM:', '<pad>']
        ])

        # init
        self.word_embed.weight.data.uniform_(-args.init_range, args.init_range)
        init_rnn(self.reader, args.init_range)
        init_cont(self.hid2output, args.init_range)
        if args.share_attn:
            init_cont(self.attn, args.init_range)
        else:
            init_cont(self.attn, args.init_range)
            init_cont(self.lang_attn, args.init_range)
            init_cont(self.sel_attn, args.init_range)
            init_cont(self.ref_attn, args.init_range)
コード例 #23
0
def main():
    parser = argparse.ArgumentParser(description='training script')
    parser.add_argument('--data',
                        type=str,
                        default='data/negotiate',
                        help='location of the data corpus')
    parser.add_argument('--nembed_word',
                        type=int,
                        default=256,
                        help='size of word embeddings')
    parser.add_argument('--nembed_ctx',
                        type=int,
                        default=64,
                        help='size of context embeddings')
    parser.add_argument(
        '--nhid_lang',
        type=int,
        default=256,
        help='size of the hidden state for the language module')
    parser.add_argument(
        '--nhid_cluster',
        type=int,
        default=256,
        help='size of the hidden state for the language module')
    parser.add_argument('--nhid_ctx',
                        type=int,
                        default=64,
                        help='size of the hidden state for the context module')
    parser.add_argument(
        '--nhid_strat',
        type=int,
        default=64,
        help='size of the hidden state for the strategy module')
    parser.add_argument(
        '--nhid_attn',
        type=int,
        default=64,
        help='size of the hidden state for the attention module')
    parser.add_argument(
        '--nhid_sel',
        type=int,
        default=64,
        help='size of the hidden state for the selection module')
    parser.add_argument('--lr',
                        type=float,
                        default=20.0,
                        help='initial learning rate')
    parser.add_argument('--min_lr',
                        type=float,
                        default=1e-5,
                        help='min threshold for learning rate annealing')
    parser.add_argument('--decay_rate',
                        type=float,
                        default=9.0,
                        help='decrease learning rate by this factor')
    parser.add_argument('--decay_every',
                        type=int,
                        default=1,
                        help='decrease learning rate after decay_every epochs')
    parser.add_argument('--momentum',
                        type=float,
                        default=0.0,
                        help='momentum for sgd')
    parser.add_argument('--clip',
                        type=float,
                        default=0.2,
                        help='gradient clipping')
    parser.add_argument('--dropout',
                        type=float,
                        default=0.5,
                        help='dropout rate in embedding layer')
    parser.add_argument('--init_range',
                        type=float,
                        default=0.1,
                        help='initialization range')
    parser.add_argument('--max_epoch',
                        type=int,
                        default=30,
                        help='max number of epochs')
    parser.add_argument('--num_clusters',
                        type=int,
                        default=50,
                        help='number of clusters')
    parser.add_argument('--bsz', type=int, default=25, help='batch size')
    parser.add_argument('--unk_threshold',
                        type=int,
                        default=20,
                        help='minimum word frequency to be in dictionary')
    parser.add_argument('--temperature',
                        type=float,
                        default=0.1,
                        help='temperature')
    parser.add_argument('--partner_ctx_weight',
                        type=float,
                        default=0.0,
                        help='selection weight')
    parser.add_argument('--sel_weight',
                        type=float,
                        default=0.6,
                        help='selection weight')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('--cuda',
                        action='store_true',
                        default=False,
                        help='use CUDA')
    parser.add_argument('--model_file',
                        type=str,
                        default='',
                        help='path to save the final model')
    parser.add_argument('--prediction_model_file',
                        type=str,
                        default='',
                        help='path to save the prediction model')
    parser.add_argument('--selection_model_file',
                        type=str,
                        default='',
                        help='path to save the selection model')
    parser.add_argument('--cluster_model_file',
                        type=str,
                        default='',
                        help='path to save the cluster model')
    parser.add_argument('--lang_model_file',
                        type=str,
                        default='',
                        help='path to save the language model')
    parser.add_argument('--visual',
                        action='store_true',
                        default=False,
                        help='plot graphs')
    parser.add_argument('--skip_values',
                        action='store_true',
                        default=False,
                        help='skip values in ctx encoder')
    parser.add_argument('--model_type',
                        type=str,
                        default='rnn_model',
                        help='model type',
                        choices=models.get_model_names())
    parser.add_argument('--domain',
                        type=str,
                        default='object_division',
                        help='domain for the dialogue')
    parser.add_argument('--clustering',
                        action='store_true',
                        default=False,
                        help='use clustering')
    parser.add_argument('--sep_sel',
                        action='store_true',
                        default=False,
                        help='use separate classifiers for selection')

    args = parser.parse_args()

    utils.use_cuda(args.cuda)
    utils.set_seed(args.seed)

    domain = get_domain(args.domain)
    model_ty = models.get_model_type(args.model_type)
    corpus = model_ty.corpus_ty(domain,
                                args.data,
                                freq_cutoff=args.unk_threshold,
                                verbose=True,
                                sep_sel=args.sep_sel)
    model = model_ty(corpus.word_dict, corpus.item_dict_old,
                     corpus.context_dict, corpus.count_dict, args)
    if args.cuda:
        model.cuda()
    engine = model_ty.engine_ty(model, args, verbose=True)
    train_loss, valid_loss, select_loss, extra = engine.train(corpus)

    utils.save_model(engine.get_model(), args.model_file)
コード例 #24
0
def main():
    parser = argparse.ArgumentParser(
        description='training script for reference resolution')
    parser.add_argument('--data',
                        type=str,
                        default='data/onecommon',
                        help='location of the data corpus')
    parser.add_argument('--model_type',
                        type=str,
                        default='rnn_reference_model',
                        help='type of model to use',
                        choices=models.get_model_names())
    parser.add_argument('--ctx_encoder_type',
                        type=str,
                        default='mlp_encoder',
                        help='type of context encoder to use',
                        choices=models.get_ctx_encoder_names())
    parser.add_argument('--attention',
                        action='store_true',
                        default=False,
                        help='use attention')
    parser.add_argument('--nembed_word',
                        type=int,
                        default=128,
                        help='size of word embeddings')
    parser.add_argument(
        '--nhid_rel',
        type=int,
        default=64,
        help='size of the hidden state for the language module')
    parser.add_argument('--nembed_ctx',
                        type=int,
                        default=128,
                        help='size of context embeddings')
    parser.add_argument('--nembed_cond',
                        type=int,
                        default=128,
                        help='size of condition embeddings')
    parser.add_argument(
        '--nhid_lang',
        type=int,
        default=128,
        help='size of the hidden state for the language module')
    parser.add_argument(
        '--nhid_strat',
        type=int,
        default=128,
        help='size of the hidden state for the strategy module')
    parser.add_argument(
        '--nhid_attn',
        type=int,
        default=64,
        help='size of the hidden state for the attention module')
    parser.add_argument(
        '--nhid_sel',
        type=int,
        default=64,
        help='size of the hidden state for the selection module')
    parser.add_argument(
        '--share_attn',
        action='store_true',
        default=False,
        help='share attention modules for selection and language output')
    parser.add_argument('--optimizer',
                        choices=['adam', 'rmsprop'],
                        default='adam',
                        help='optimizer to use')
    parser.add_argument('--lr',
                        type=float,
                        default=0.001,
                        help='initial learning rate')
    parser.add_argument('--min_lr',
                        type=float,
                        default=1e-5,
                        help='min threshold for learning rate annealing')
    parser.add_argument('--decay_rate',
                        type=float,
                        default=9.0,
                        help='decrease learning rate by this factor')
    parser.add_argument('--decay_every',
                        type=int,
                        default=1,
                        help='decrease learning rate after decay_every epochs')
    parser.add_argument('--momentum',
                        type=float,
                        default=0.0,
                        help='momentum for sgd')
    parser.add_argument('--clip',
                        type=float,
                        default=0.5,
                        help='gradient clipping')
    parser.add_argument('--dropout',
                        type=float,
                        default=0.5,
                        help='dropout rate in embedding layer')
    parser.add_argument('--init_range',
                        type=float,
                        default=0.01,
                        help='initialization range')
    parser.add_argument('--max_epoch',
                        type=int,
                        default=20,
                        help='max number of epochs')
    parser.add_argument('--bsz', type=int, default=16, help='batch size')
    parser.add_argument('--unk_threshold',
                        type=int,
                        default=20,
                        help='minimum word frequency to be in dictionary')
    parser.add_argument('--temperature',
                        type=float,
                        default=0.1,
                        help='temperature')
    parser.add_argument('--lang_weight',
                        type=float,
                        default=1.0,
                        help='language loss weight')
    parser.add_argument('--ref_weight',
                        type=float,
                        default=1.0,
                        help='reference loss weight')
    parser.add_argument('--num_ref_weight',
                        type=float,
                        default=1.0,
                        help='reference loss weight')
    parser.add_argument('--sel_weight',
                        type=float,
                        default=1.0,
                        help='selection loss weight')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('--cuda',
                        action='store_true',
                        default=False,
                        help='use CUDA')
    parser.add_argument('--model_file',
                        type=str,
                        default='tmp.th',
                        help='path to save the final model')
    parser.add_argument('--domain',
                        type=str,
                        default='one_common',
                        help='domain for the dialogue')
    parser.add_argument('--tensorboard_log',
                        action='store_true',
                        default=False,
                        help='log training with tensorboard')
    parser.add_argument('--repeat_train',
                        action='store_true',
                        default=False,
                        help='repeat training n times')
    parser.add_argument('--corpus_type',
                        choices=['full', 'uncorrelated', 'success_only'],
                        default='full',
                        help='type of training corpus to use')

    parser.add_argument('--remove_location',
                        action='store_true',
                        default=False,
                        help='remove locative information from input')
    parser.add_argument('--remove_size',
                        action='store_true',
                        default=False,
                        help='remove size information from input')
    parser.add_argument('--remove_color',
                        action='store_true',
                        default=False,
                        help='remove color information from input')
    parser.add_argument('--remove_size_color',
                        action='store_true',
                        default=False,
                        help='remove size and color information from input')

    args = parser.parse_args()

    if args.repeat_train:
        seeds = list(range(10))
    else:
        seeds = [1]

    for seed in seeds:
        utils.use_cuda(args.cuda)
        utils.set_seed(args.seed)

        domain = get_domain(args.domain)
        model_ty = models.get_model_type(args.model_type)

        corpus = model_ty.corpus_ty(
            domain,
            args.data,
            train='train_reference_shift_{}.txt'.format(seed),
            valid='valid_reference_shift_{}.txt'.format(seed),
            test='test_reference_shift_{}.txt'.format(seed),
            freq_cutoff=args.unk_threshold,
            verbose=True)

        model = model_ty(corpus.word_dict, args)
        if args.cuda:
            model.cuda()

        engine = model_ty.engine_ty(model, args, verbose=True)
        if args.optimizer == 'adam':
            best_valid_loss, best_model = engine.train(corpus)
        elif args.optimizer == 'rmsprop':
            best_valid_loss, best_model = engine.train_scheduled(corpus)

        utils.save_model(best_model, args.model_file + '_' + str(seed) + '.th')
        utils.save_model(best_model.state_dict(), 'stdict_' + args.model_file)
コード例 #25
0
def main():
    parser = argparse.ArgumentParser(description='Reinforce')
    parser.add_argument('--alice_model_file',
                        type=str,
                        help='Alice model file')
    parser.add_argument('--bob_model_file', type=str, help='Bob model file')
    parser.add_argument('--output_model_file',
                        type=str,
                        help='output model file')
    parser.add_argument('--context_file', type=str, help='context file')
    parser.add_argument('--temperature',
                        type=float,
                        default=1.0,
                        help='temperature')
    parser.add_argument('--pred_temperature',
                        type=float,
                        default=1.0,
                        help='temperature')
    parser.add_argument('--cuda',
                        action='store_true',
                        default=False,
                        help='use CUDA')
    parser.add_argument('--verbose',
                        action='store_true',
                        default=False,
                        help='print out converations')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument(
        '--score_threshold',
        type=int,
        default=6,
        help='successful dialog should have more than score_threshold in score'
    )
    parser.add_argument('--log_file',
                        type=str,
                        default='',
                        help='log successful dialogs to file for training')
    parser.add_argument('--smart_bob',
                        action='store_true',
                        default=False,
                        help='make Bob smart again')
    parser.add_argument('--gamma',
                        type=float,
                        default=0.99,
                        help='discount factor')
    parser.add_argument('--eps', type=float, default=0.5, help='eps greedy')
    parser.add_argument('--momentum',
                        type=float,
                        default=0.1,
                        help='momentum for sgd')
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
    parser.add_argument('--clip',
                        type=float,
                        default=0.1,
                        help='gradient clip')
    parser.add_argument('--rl_lr',
                        type=float,
                        default=0.002,
                        help='RL learning rate')
    parser.add_argument('--rl_clip',
                        type=float,
                        default=2.0,
                        help='RL gradient clip')
    parser.add_argument('--ref_text',
                        type=str,
                        help='file with the reference text')
    parser.add_argument('--sv_train_freq',
                        type=int,
                        default=-1,
                        help='supervision train frequency')
    parser.add_argument('--nepoch',
                        type=int,
                        default=1,
                        help='number of epochs')
    parser.add_argument('--hierarchical',
                        action='store_true',
                        default=False,
                        help='use hierarchical training')
    parser.add_argument('--visual',
                        action='store_true',
                        default=False,
                        help='plot graphs')
    parser.add_argument('--domain',
                        type=str,
                        default='object_division',
                        help='domain for the dialogue')
    parser.add_argument('--selection_model_file',
                        type=str,
                        default='',
                        help='path to save the final model')
    parser.add_argument('--data',
                        type=str,
                        default='data/negotiate',
                        help='location of the data corpus')
    parser.add_argument('--unk_threshold',
                        type=int,
                        default=20,
                        help='minimum word frequency to be in dictionary')
    parser.add_argument('--bsz', type=int, default=16, help='batch size')
    parser.add_argument('--validate',
                        action='store_true',
                        default=False,
                        help='plot graphs')
    parser.add_argument('--scratch',
                        action='store_true',
                        default=False,
                        help='erase prediciton weights')
    parser.add_argument('--sep_sel',
                        action='store_true',
                        default=False,
                        help='use separate classifiers for selection')

    args = parser.parse_args()

    utils.use_cuda(args.cuda)
    utils.set_seed(args.seed)

    alice_model = utils.load_model(args.alice_model_file)  # RnnModel
    alice_ty = get_agent_type(alice_model)  # RnnRolloutAgent
    alice = alice_ty(alice_model, args, name='Alice', train=True)
    alice.vis = args.visual

    bob_model = utils.load_model(args.bob_model_file)  # RnnModel
    bob_ty = get_agent_type(bob_model)  # RnnAgent
    bob = bob_ty(bob_model, args, name='Bob', train=False)

    dialog = Dialog([alice, bob], args)
    logger = DialogLogger(verbose=args.verbose, log_file=args.log_file)
    ctx_gen = ContextGenerator(args.context_file)

    domain = get_domain(args.domain)
    corpus = alice_model.corpus_ty(domain,
                                   args.data,
                                   freq_cutoff=args.unk_threshold,
                                   verbose=True,
                                   sep_sel=args.sep_sel)
    engine = alice_model.engine_ty(alice_model, args)

    reinforce = Reinforce(dialog, ctx_gen, args, engine, corpus, logger)
    reinforce.run()

    utils.save_model(alice.model, args.output_model_file)
コード例 #26
0
    def __init__(self, word_dict, item_dict, context_dict, output_length, args, device_id):
        super(DialogModel, self).__init__(device_id)

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.args = args

        self.word_encoder = nn.Embedding(len(self.word_dict), args.nembed_word)

        ctx_encoder_ty = modules.RnnContextEncoder if args.rnn_ctx_encoder \
            else modules.MlpContextEncoder
        self.ctx_encoder = ctx_encoder_ty(len(self.context_dict), domain.input_length(),
            args.nembed_ctx, args.nhid_ctx, args.init_range, device_id)

        self.reader = nn.GRU(
            input_size=args.nhid_ctx + args.nembed_word,
            hidden_size=args.nhid_lang,
            bias=True)
        self.decoder = nn.Linear(args.nhid_lang, args.nembed_word)
        self.writer = nn.GRUCell(
            input_size=args.nhid_ctx + args.nembed_word,
            hidden_size=args.nhid_lang,
            bias=True)

        # Tie the weights of reader and writer
        self.writer.weight_ih = self.reader.weight_ih_l0
        self.writer.weight_hh = self.reader.weight_hh_l0
        self.writer.bias_ih = self.reader.bias_ih_l0
        self.writer.bias_hh = self.reader.bias_hh_l0

        self.dropout = nn.Dropout(args.dropout)

        self.sel_rnn = nn.GRU(
            input_size=args.nhid_lang + args.nembed_word,
            hidden_size=args.nhid_attn,
            bias=True,
            bidirectional=True)

        # Mask for disabling special tokens when generating sentences
        self.special_token_mask = torch.FloatTensor(len(self.word_dict))

        self.sel_encoder = nn.Sequential(
            torch.nn.Linear(2 * args.nhid_attn + args.nhid_ctx, args.nhid_sel),
            nn.Tanh()
        )
        self.attn = nn.Sequential(
            torch.nn.Linear(2 * args.nhid_attn, args.nhid_attn),
            nn.Tanh(),
            torch.nn.Linear(args.nhid_attn, 1)
        )
        self.sel_decoders = nn.ModuleList()
        for i in range(output_length):
            self.sel_decoders.append(nn.Linear(args.nhid_sel, len(self.item_dict)))

        self.init_weights()

        for i in range(len(self.word_dict)):
            w = self.word_dict.get_word(i)
            special = domain.item_pattern.match(w) or w in ('<unk>', 'YOU:', 'THEM:', '<pad>')
            self.special_token_mask[i] = -999 if special else 0.0

        self.special_token_mask = self.to_device(self.special_token_mask)
コード例 #27
0
def main():
    parser = argparse.ArgumentParser(
        description='training script for markable detection')
    parser.add_argument('--data',
                        type=str,
                        default='data/onecommon',
                        help='location of the data corpus')
    parser.add_argument('--nembed_word',
                        type=int,
                        default=128,
                        help='size of word embeddings')
    parser.add_argument('--nembed_ctx',
                        type=int,
                        default=128,
                        help='size of context embeddings')
    parser.add_argument(
        '--nhid_lang',
        type=int,
        default=128,
        help='size of the hidden state for the language module')
    parser.add_argument('--optimizer',
                        choices=['adam', 'rmsprop'],
                        default='adam',
                        help='optimizer to use')
    parser.add_argument('--lr',
                        type=float,
                        default=0.001,
                        help='initial learning rate')
    parser.add_argument('--min_lr',
                        type=float,
                        default=1e-5,
                        help='min threshold for learning rate annealing')
    parser.add_argument('--decay_rate',
                        type=float,
                        default=9.0,
                        help='decrease learning rate by this factor')
    parser.add_argument('--decay_every',
                        type=int,
                        default=1,
                        help='decrease learning rate after decay_every epochs')
    parser.add_argument('--momentum',
                        type=float,
                        default=0.0,
                        help='momentum for sgd')
    parser.add_argument('--clip',
                        type=float,
                        default=0.5,
                        help='gradient clipping')
    parser.add_argument('--dropout',
                        type=float,
                        default=0.5,
                        help='dropout rate in embedding layer')
    parser.add_argument('--init_range',
                        type=float,
                        default=0.01,
                        help='initialization range')
    parser.add_argument('--max_epoch',
                        type=int,
                        default=10,
                        help='max number of epochs')
    parser.add_argument('--bsz', type=int, default=1, help='batch size')
    parser.add_argument('--unk_threshold',
                        type=int,
                        default=20,
                        help='minimum word frequency to be in dictionary')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('--cuda',
                        action='store_true',
                        default=False,
                        help='use CUDA')
    parser.add_argument('--model_file',
                        type=str,
                        default='markable_detector',
                        help='path to save the final model')
    parser.add_argument('--domain',
                        type=str,
                        default='one_common',
                        help='domain for the dialogue')
    parser.add_argument('--tensorboard_log',
                        action='store_true',
                        default=False,
                        help='log training with tensorboard')
    parser.add_argument('--repeat_train',
                        action='store_true',
                        default=False,
                        help='repeat training n times')
    parser.add_argument('--test_only',
                        action='store_true',
                        default=False,
                        help='test only')
    parser.add_argument('--corpus_type',
                        choices=['full', 'uncorrelated', 'success_only'],
                        default='full',
                        help='type of training corpus to use')
    args = parser.parse_args()

    if args.repeat_train:
        seeds = list(range(10))
    else:
        seeds = [1]

    for seed in seeds:
        utils.use_cuda(args.cuda)
        utils.set_seed(args.seed)

        domain = get_domain(args.domain)

        corpus = BiLSTM_CRF.corpus_ty(
            domain,
            args.data,
            train='train_markable_{}.txt'.format(seed),
            valid='valid_markable_{}.txt'.format(seed),
            test='test_markable_{}.txt'.format(seed),
            verbose=True)

        if args.test_only:
            best_model = utils.load_model(args.model_file + '_' + str(seed) +
                                          '.th')
            if args.cuda:
                best_model.cuda()
            else:
                device = torch.device("cpu")
                best_model.to(device)
            best_model.eval()
        else:
            model = BiLSTM_CRF(len(corpus.word_dict), corpus.bio_dict,
                               args.nembed_word, args.nhid_lang)
            optimizer = optim.Adam(model.parameters(), lr=args.lr)

            if args.cuda:
                model.cuda()

            best_model, best_valid_loss = copy.deepcopy(model), 1e100
            validdata = corpus.valid_dataset(args.bsz)

            for epoch in range(1, args.max_epoch + 1):
                traindata = corpus.train_dataset(args.bsz)

                trainset, trainset_stats = traindata
                validset, validset_stats = validdata

                # train pass
                model.train()
                total_lang_loss, total_select_loss, total_num_correct, total_num_select = 0, 0, 0, 0
                start_time = time.time()

                for batch in tqdm(trainset):
                    model.zero_grad()

                    ctx, words, markables, scenario_ids, agents, chat_ids = batch

                    ctx = Variable(ctx)
                    words = Variable(words)
                    markables = Variable(markables)

                    loss = model.neg_log_likelihood(words, markables)
                    loss.sum().backward()
                    optimizer.step()

                # valid pass
                model.eval()
                with torch.no_grad():
                    correct = 0
                    total = 0
                    valid_loss = 0
                    for batch in tqdm(validset):
                        ctx, words, markables, scenario_ids, agents, chat_ids = batch

                        valid_loss += model.neg_log_likelihood(
                            words, markables).sum().item()

                        score, tag_seq = model(words)
                        correct += (torch.Tensor(tag_seq).long() == markables
                                    ).sum().item()
                        total += len(tag_seq)

                    print("epoch {}".format(epoch))
                    print("valid loss: {:.5f}".format(valid_loss))
                    print("valid accuracy: {:.5f}".format(correct / total))

                    if valid_loss < best_valid_loss:
                        print("update best model")
                        best_model = copy.deepcopy(model)
                        best_valid_loss = valid_loss

        # test pass
        testdata = corpus.test_dataset(args.bsz)
        testset, testset_stats = testdata
        best_model.eval()
        with torch.no_grad():
            correct = 0
            total = 0
            test_loss = 0
            for batch in tqdm(testset):
                ctx, words, markables, scenario_ids, agents, chat_ids = batch

                test_loss += best_model.neg_log_likelihood(
                    words, markables).sum().item()

                score, tag_seq = best_model(words)
                correct += (
                    torch.Tensor(tag_seq).long() == markables).sum().item()
                total += len(tag_seq)

            print("final test {}".format(epoch))
            print("test loss: {:.5f}".format(test_loss))
            print("test accuracy: {:.5f}".format(correct / total))

        if not args.test_only:
            utils.save_model(best_model,
                             args.model_file + '_' + str(seed) + '.th')
            utils.save_model(best_model.state_dict(),
                             'stdict_' + args.model_file)
コード例 #28
0
ファイル: test_reference.py プロジェクト: Alab-NII/onecommon
def main():
    parser = argparse.ArgumentParser(
        description='testing script for reference resolution')
    parser.add_argument('--data',
                        type=str,
                        default='data/onecommon',
                        help='location of the data corpus')
    parser.add_argument('--unk_threshold',
                        type=int,
                        default=10,
                        help='minimum word frequency to be in dictionary')
    parser.add_argument('--model_file',
                        type=str,
                        required=True,
                        help='pretrained model file')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('--hierarchical',
                        action='store_true',
                        default=False,
                        help='use hierarchical model')
    parser.add_argument('--bsz', type=int, default=16, help='batch size')
    parser.add_argument('--cuda',
                        action='store_true',
                        default=False,
                        help='use CUDA')
    parser.add_argument('--domain',
                        type=str,
                        default='one_common',
                        help='domain for the dialogue')
    parser.add_argument('--vocab_corpus',
                        choices=['full', 'uncorrelated', 'success_only'],
                        default='full',
                        help='vocabulary of the corpus to use')
    parser.add_argument('--corpus_type',
                        choices=['full', 'uncorrelated', 'success_only'],
                        default='full',
                        help='type of test corpus to use')
    parser.add_argument('--bleu_n',
                        type=int,
                        default=0,
                        help='test ngram bleu')
    parser.add_argument('--temperature',
                        type=float,
                        default=0.1,
                        help='temperature')

    # for error analysis
    parser.add_argument('--transcript_file',
                        type=str,
                        default='final_transcripts.json',
                        help='scenario file')
    parser.add_argument('--markable_file',
                        type=str,
                        default='markable_annotation.json',
                        help='scenario file')
    parser.add_argument('--show_errors',
                        action='store_true',
                        default=False,
                        help='show errors')

    # analysis parameters
    parser.add_argument('--fix_misspellings',
                        action='store_true',
                        default=False,
                        help='fix misspellings')
    parser.add_argument('--shuffle_utterance',
                        action='store_true',
                        default=False,
                        help='shuffle order of words in the utterance')
    parser.add_argument('--shuffle_word_types',
                        type=str,
                        nargs='*',
                        default=[],
                        help='shuffle specified class of words in the output')
    parser.add_argument('--drop_word_types',
                        type=str,
                        nargs='*',
                        default=[],
                        help='drop specified class of words in the output')
    parser.add_argument('--replace_word_types',
                        type=str,
                        nargs='*',
                        default=[],
                        help='replace specified class of words in the output')
    parser.add_argument('--repeat_test',
                        action='store_true',
                        default=False,
                        help='repeat training n times')
    parser.add_argument('--test_ref_forward',
                        action='store_true',
                        default=False,
                        help='test forward reference instead')

    args = parser.parse_args()

    if args.bleu_n > 0:
        # current support
        args.bsz = 1

    if args.repeat_test:
        seeds = list(range(10))
    else:
        seeds = [args.seed]

    repeat_results = defaultdict(list)

    model_referent_annotation = {}

    init2num_referents = defaultdict(Counter)

    for seed in seeds:
        device_id = utils.use_cuda(args.cuda)
        utils.set_seed(args.seed)

        domain = get_domain(args.domain)
        model = utils.load_model(args.model_file + '_' + str(seed) + '.th')
        if args.cuda:
            model.cuda()
        else:
            device = torch.device("cpu")
            model.to(device)
        model.eval()

        corpus = model.corpus_ty(
            domain,
            args.data,
            train='train_reference_shift_{}.txt'.format(seed),
            valid='valid_reference_shift_{}.txt'.format(seed),
            test='test_reference_shift_{}.txt'.format(seed),
            freq_cutoff=args.unk_threshold,
            verbose=True)

        with open(os.path.join(args.data, args.transcript_file), "r") as f:
            dialog_corpus = json.load(f)
        with open(os.path.join(args.data, args.markable_file), "r") as f:
            markable_annotation = json.load(f)
        with open(
                os.path.join(args.data, "aggregated_referent_annotation.json"),
                "r") as f:
            aggregated_referent_annotation = json.load(f)

        scenarios = {
            scenario['scenario_uuid']: scenario
            for scenario in dialog_corpus
        }

        crit = Criterion(model.word_dict, device_id=device_id)
        sel_crit = nn.CrossEntropyLoss()
        ref_crit = nn.BCEWithLogitsLoss()

        testset, testset_stats = corpus.test_dataset(args.bsz)
        test_lang_loss, test_select_loss, test_reference_loss, test_select_correct, test_select_total, test_reference_correct, test_reference_total, test_num_ref_correct, test_num_ref_total = 0, 0, 0, 0, 0, 0, 0, 0, 0
        """
            Variables to keep track of the results for analysis
        """

        # num_referents --> count, count correct
        num_markables = 0
        num_markables_counter = Counter()
        num_markables_correct = Counter()

        exact_match = 0
        exact_match_counter = Counter()

        # location of markable --> count, count correct, count exact match
        location_counter = Counter()
        location_correct = Counter()
        location_exact_match = Counter()

        # information to compute correlation between selection and reference score
        select_correct = {}
        reference_correct = {}
        reference_total = {}

        # markable text --> count, count correct, count exact match
        text_counter = Counter()
        text_correct = Counter()
        text_exact_match = Counter()

        # init token --> count, count correct
        init_counter = Counter()
        init_correct = Counter()
        init_exact_match = Counter()

        # num ref confusion
        num_ref_confusion = np.zeros([8, 8], dtype=int)

        anaphora_list = [
            "it", "that", "thats", "this", "its", "they", "their", "itself",
            "them", "those", "it's"
        ]
        total_anaphora = 0
        correct_anaphora = 0

        bleu_scores = []

        for batch in testset:
            ctx, inpt, tgt, ref_inpt, ref_tgt, num_ref_tgt, sel_tgt, scenario_ids, real_ids, agents, chat_ids, sel_idx = batch

            ctx = Variable(ctx)
            inpt = Variable(inpt)
            if ref_inpt is not None:
                ref_inpt = Variable(ref_inpt)
            out, ref_out, num_ref_out, sel_out = model.forward(
                ctx, inpt, ref_inpt, sel_idx)

            tgt = Variable(tgt)
            sel_tgt = Variable(sel_tgt)
            lang_loss = crit(out, tgt)

            if ref_inpt is not None:
                ref_tgt = Variable(ref_tgt)
                ref_tgt = torch.transpose(ref_tgt, 0, 1).contiguous().float()
                ref_loss = ref_crit(ref_out, ref_tgt)
                t = Variable(torch.FloatTensor([0]))  # threshold
                if model.args.num_ref_weight > 0:
                    num_ref_pred = num_ref_out.max(dim=2)[1]
                    ref_results = torch.zeros_like(ref_tgt)
                    ref_correct = 0
                    for i in range(ref_out.size(0)):
                        for j in range(ref_out.size(1)):
                            ref_pred = torch.zeros_like(ref_tgt[i][j])
                            for ref_idx in range(ref_pred.size(0)):
                                if ref_idx in ref_out[i][j].topk(
                                        num_ref_pred[i][j])[1]:
                                    ref_pred[ref_idx] = 1.0
                            ref_results[i][j] = (
                                ref_pred.long() == ref_tgt[i][j].long())
                            ref_correct += (ref_pred.long() == ref_tgt[i]
                                            [j].long()).sum().item()
                    ref_total = ref_tgt.size(0) * ref_tgt.size(
                        1) * ref_tgt.size(2)
                else:
                    ref_results = ((ref_out > 0).long() == ref_tgt.long())
                    ref_correct = ((ref_out >
                                    0).long() == ref_tgt.long()).sum().item()
                    ref_total = ref_tgt.size(0) * ref_tgt.size(
                        1) * ref_tgt.size(2)

                # compute more details of reference resolution
                for i in range(ref_tgt.size(0)):  # markable idx
                    for j in range(ref_tgt.size(1)):  # batch idx
                        chat_id = chat_ids[j]

                        # add chat level details if not exists
                        if chat_id not in reference_correct:
                            reference_correct[chat_id] = ref_results[:,
                                                                     j, :].sum(
                                                                     ).item()
                        if chat_id not in reference_total:
                            reference_total[
                                chat_id] = ref_results[:, j, :].size(
                                    0) * ref_results[:, j, :].size(1)
                        if chat_id not in model_referent_annotation:
                            model_referent_annotation[chat_id] = {}

                        markables = []
                        # markables information from aggregated_referent_annotation
                        for markable in markable_annotation[chat_id][
                                "markables"]:
                            markable_id = markable["markable_id"]
                            if markable_id in aggregated_referent_annotation[
                                    chat_id] and markable["speaker"] == agents[
                                        j]:
                                if "unidentifiable" in aggregated_referent_annotation[
                                        chat_id][
                                            markable_id] and aggregated_referent_annotation[
                                                chat_id][markable_id][
                                                    "unidentifiable"]:
                                    if markable_id not in model_referent_annotation[
                                            chat_id] and markable[
                                                "speaker"] == agents[j]:
                                        model_referent_annotation[chat_id][
                                            markable_id] = {
                                                'ambiguous': False,
                                                'referents': [],
                                                'unidentifiable': True
                                            }
                                    continue
                                markables.append(markable)
                        assert len(markables) == ref_tgt.size(0)

                        if model.args.num_ref_weight > 0:
                            ref_pred = torch.zeros_like(ref_tgt[i][j])
                            for ref_idx in range(ref_pred.size(0)):
                                #if ref_idx in ref_out[i][j].topk(num_ref_tgt[i][j])[1]:
                                if ref_idx in ref_out[i][j].topk(
                                        num_ref_pred[i][j])[1]:
                                    ref_pred[ref_idx] = 1.0
                            correct_result = (ref_pred.long() == ref_tgt[i]
                                              [j].long()).sum().item()
                            exact_match_result = torch.equal(
                                ref_pred.long(), ref_tgt[i][j].long())
                            num_referents = ref_tgt[i][j].long().sum().item()
                        else:
                            correct_result = ((ref_out > 0).long(
                            )[i][j] == ref_tgt.long())[i][j].sum().item()
                            exact_match_result = torch.equal(
                                (ref_out > 0).long()[i][j],
                                ref_tgt.long()[i][j])
                            num_referents = ref_tgt.long()[i][j].sum().item()
                            ref_pred = (ref_out > 0).long()[i][j]
                        """
                            Add information to variables
                        """
                        num_markables += 1
                        num_markables_counter[num_referents] += 1
                        num_markables_correct[num_referents] += correct_result

                        # compute exact match
                        if exact_match_result:
                            exact_match += 1
                            exact_match_counter[ref_tgt.long()[i]
                                                [j].sum().item()] += 1
                            location_exact_match[i] += 1
                            if num_referents == 1:  # temporal condition
                                text_exact_match[markables[i]
                                                 ["text"].lower()] += 1
                                init_exact_match[markables[i]["text"].lower().
                                                 split(" ")[0]] += 1

                        location_correct[i] += correct_result
                        location_counter[i] += 1

                        if num_referents == 1:  # temporal condition
                            text_counter[markables[i]["text"].lower()] += 1
                            text_correct[markables[i]
                                         ["text"].lower()] += correct_result
                            init_counter[markables[i]["text"].lower().split(
                                " ")[0]] += 1
                            init_correct[markables[i]["text"].lower().split(
                                " ")[0]] += correct_result

                        init2num_referents[markables[i]["text"].lower().split(
                            " ")[0]][num_referents] += 1

                        # test anaphora
                        if markables[i]["text"].lower() in anaphora_list:
                            total_anaphora += 1
                            if exact_match_result:
                                correct_anaphora += 1

                        # keep track of model predictions for later visualization
                        chat = [
                            chat for chat in dialog_corpus
                            if chat['uuid'] == chat_id
                        ]
                        chat = chat[0]
                        if markables[i][
                                'markable_id'] not in model_referent_annotation[
                                    chat_id]:
                            model_referent_annotation[chat_id][
                                markables[i]['markable_id']] = {}
                            model_referent_annotation[chat_id][
                                markables[i]['markable_id']]['referents'] = []
                            model_referent_annotation[chat_id][markables[i][
                                'markable_id']]['ambiguous'] = False
                            model_referent_annotation[chat_id][markables[i][
                                'markable_id']]['unidentifiable'] = False
                            for ent, is_referent in zip(
                                    chat['scenario']['kbs'][agents[j]],
                                    ref_pred.long().tolist()):
                                #for ent, is_referent in zip(chat['scenario']['kbs'][agents[j]], (ref_out > 0).long()[i][j].tolist()):
                                if is_referent:
                                    model_referent_annotation[chat_id][
                                        markables[i]
                                        ['markable_id']]['referents'].append(
                                            "agent_{}_{}".format(
                                                agents[j], ent['id']))
            else:
                ref_loss = None
                ref_correct = 0
                ref_total = 0

            sel_loss = sel_crit(sel_out, sel_tgt)
            sel_correct = (sel_out.max(dim=1)[1] == sel_tgt).sum().item()
            sel_total = sel_out.size(0)
            for i in range(sel_tgt.size(0)):  # batch idx
                chat_id = chat_ids[i]
                sel_resuts = (sel_out.max(dim=1)[1] == sel_tgt)
                if sel_resuts[i]:
                    select_correct[chat_id] = 1
                else:
                    select_correct[chat_id] = 0

            if model.args.num_ref_weight > 0 and num_ref_out is not None:
                num_ref_out = num_ref_out.view(-1, num_ref_out.size(2))
                num_ref_tgt = torch.transpose(num_ref_tgt, 0, 1).contiguous()
                num_ref_tgt = num_ref_tgt.view(-1)
                num_ref_loss = sel_crit(num_ref_out, num_ref_tgt)
                num_ref_correct = (num_ref_out.max(
                    dim=1)[1] == num_ref_tgt).sum().item()
                num_ref_total = num_ref_tgt.size(0)
                for mi in range(num_ref_out.size(0)):
                    model_pred = num_ref_out[mi].max(dim=0)[1].item()
                    ground_truth = num_ref_tgt[mi].item()
                    num_ref_confusion[ground_truth][model_pred] += 1
            else:
                num_ref_correct = 0
                num_ref_total = 0

            test_lang_loss += lang_loss.item()
            test_select_loss += sel_loss.item()
            if ref_loss:
                test_reference_loss += ref_loss.item()
            test_select_correct += sel_correct
            test_select_total += sel_total
            test_reference_correct += ref_correct
            test_reference_total += ref_total
            test_num_ref_correct += num_ref_correct
            test_num_ref_total += num_ref_total

            if args.bleu_n > 0:
                ctx_h = model.ctx_encoder(ctx.transpose(0, 1))

                my_utterance = None
                idx = 0
                while True:
                    if inpt[idx] == model.word_dict.word2idx['YOU:']:
                        start = idx
                        my_utterance = model.read_and_write(
                            inpt[:idx],
                            ctx_h,
                            30,
                            temperature=args.temperature)
                        my_utterance = model.word_dict.i2w(my_utterance)
                        #print(my_utterance)
                        while not inpt[idx] in [
                                model.word_dict.word2idx[stop_token]
                                for stop_token in data.STOP_TOKENS
                        ]:
                            idx += 1
                        end = idx
                        golden_utterance = inpt[start:end]
                        golden_utterance = model.word_dict.i2w(
                            golden_utterance)
                        bleu_scores.append(100 * sentence_bleu(
                            [golden_utterance],
                            my_utterance,
                            weights=[
                                1 for i in range(4) if args.bleu_n == i
                            ],  #weights=[1 / args.bleu_n] * args.bleu_n,
                            smoothing_function=SmoothingFunction().method7))
                    if inpt[idx] == model.word_dict.word2idx['<selection>']:
                        break

                    idx += 1

        # Main results:
        # Dividing by the number of words in the input, not the tokens modeled,
        # because the latter includes padding
        test_lang_loss /= testset_stats['nonpadn']
        test_select_loss /= len(testset)
        test_select_accuracy = test_select_correct / test_select_total
        test_reference_accuracy = test_reference_correct / test_reference_total
        if test_num_ref_total > 0:
            test_num_ref_accuracy = test_num_ref_correct / test_num_ref_total
        else:
            test_num_ref_accuracy = 0
        print('testlangloss %.8f | testlangppl %.8f' %
              (test_lang_loss, np.exp(test_lang_loss)))
        print('testselectloss %.8f | testselectaccuracy %.6f' %
              (test_select_loss, test_select_accuracy))
        print('testreferenceloss %.8f | testreferenceaccuracy %.6f' %
              (test_reference_loss, test_reference_accuracy))
        print('reference_exact_match %.6f' % (exact_match / num_markables))
        for k in num_markables_counter.keys():
            print('{}: {:.4f} {:.4f} (out of {})'.format(
                k, num_markables_correct[k] / (num_markables_counter[k] * 7),
                exact_match_counter[k] / num_markables_counter[k],
                num_markables_counter[k]))
        print('test anaphora: {} (out of {})'.format(
            correct_anaphora / total_anaphora, total_anaphora))

        if args.bleu_n > 0:
            print('average bleu score {}'.format(np.mean(bleu_scores)))

        # reference/selection correlation
        reference_score = []
        selection_score = []
        for chat_id in reference_correct.keys():
            reference_score.append(reference_correct[chat_id] /
                                   reference_total[chat_id])
            selection_score.append(select_correct[chat_id])
        plt.xlabel('reference score', fontsize=14)
        plt.ylabel('selection score', fontsize=14)
        sns.regplot(x=reference_score, y=selection_score)
        plt.savefig('reference_selection_{}.png'.format(seed), dpi=300)
        plt.clf()
        reference_score = np.array(reference_score)
        selection_score = np.array(selection_score)
        print("reference selection correlation: {}".format(
            np.corrcoef(reference_score, selection_score)))

        # keep track of results for this run
        repeat_results["test_lang_loss"].append(test_lang_loss)
        repeat_results["test_select_loss"].append(test_select_loss)
        repeat_results["test_select_accuracy"].append(test_select_accuracy)
        repeat_results["test_reference_loss"].append(test_reference_loss)
        repeat_results["test_reference_accuracy"].append(
            test_reference_accuracy)
        repeat_results["test_num_ref_accuracy"].append(test_num_ref_accuracy)
        repeat_results["correlation_score"].append(
            np.corrcoef(reference_score, selection_score)[0][1])
        repeat_results["num_markables_counter"].append(
            copy.copy(num_markables_counter))
        repeat_results["exact_match_counter"].append(
            copy.copy(exact_match_counter))
        repeat_results["num_markables_correct"].append(
            copy.copy(num_markables_correct))
        repeat_results["reference_exact_match"].append(exact_match /
                                                       num_markables)
        repeat_results["test_perplexity"].append(np.exp(test_lang_loss))
        repeat_results["location_counter"].append(copy.copy(location_counter))
        repeat_results["location_correct"].append(copy.copy(location_correct))
        repeat_results["location_exact_match"].append(
            copy.copy(location_exact_match))
        repeat_results["init_counter"].append(copy.copy(init_counter))
        repeat_results["init_correct"].append(copy.copy(init_correct))
        repeat_results["init_exact_match"].append(copy.copy(init_exact_match))

    print("=================================\n\n")
    print("repeat test lang loss %.8f" %
          np.mean(repeat_results["test_lang_loss"]))
    print("repeat test select loss %.8f" %
          np.mean(repeat_results["test_select_loss"]))
    print("repeat test select accuracy %.8f ( %.8f )" %
          (np.mean(repeat_results["test_select_accuracy"]),
           np.std(repeat_results["test_select_accuracy"])))
    print("repeat test reference loss %.8f" %
          np.mean(repeat_results["test_reference_loss"]))
    print("repeat test reference accuracy %.8f ( %.8f )" %
          (np.mean(repeat_results["test_reference_accuracy"]),
           np.std(repeat_results["test_reference_accuracy"])))
    print("repeat test num ref accuracy %.8f ( %.8f )" %
          (np.mean(repeat_results["test_num_ref_accuracy"]),
           np.std(repeat_results["test_reference_accuracy"])))
    print("repeat correlation score %.8f ( %.8f )" %
          (np.mean(repeat_results["correlation_score"]),
           np.std(repeat_results["correlation_score"])))
    print("repeat correlation score %.8f ( %.8f )" %
          (np.mean(repeat_results["correlation_score"]),
           np.std(repeat_results["correlation_score"])))
    print("repeat reference exact match %.8f ( %.8f )" %
          (np.mean(repeat_results["reference_exact_match"]),
           np.std(repeat_results["reference_exact_match"])))
    print("repeat test perplexity %.8f ( %.8f )" %
          (np.mean(repeat_results["test_perplexity"]),
           np.std(repeat_results["test_perplexity"])))

    for k in num_markables_counter.keys():
        print("repeat accuracy and exact match:")
        num_markables = []
        exact_match = []
        exact_match_rate = []
        num_markables_correct = []
        for seed in range(len(seeds)):
            num_markables.append(
                repeat_results["num_markables_counter"][seed][k])
            exact_match.append(repeat_results["exact_match_counter"][seed][k])
            exact_match_rate.append(
                repeat_results["exact_match_counter"][seed][k] /
                repeat_results["num_markables_counter"][seed][k])
            num_markables_correct.append(
                repeat_results["num_markables_correct"][seed][k] /
                (repeat_results["num_markables_counter"][seed][k] * 7))
        print('{}: {:.5f} (std {}) {:.5f} (std {}) (count {})'.format(
            k, np.mean(num_markables_correct), np.std(num_markables_correct),
            np.mean(exact_match_rate), np.std(exact_match_rate),
            np.mean(num_markables)))

    dump_json(model_referent_annotation,
              "{}_referent_annotation.json".format(args.model_file))

    print("exact match at each location:")
    markable_location_plot = []
    exact_match_rate_plot = []
    accuracy_plot = []
    for loc in range(12):
        accuracy = []
        exact_match_rate = []
        total_count = 0
        for seed in range(len(seeds)):
            if repeat_results["location_counter"][seed][loc] > 0:
                exact_match_rate.append(
                    repeat_results["location_exact_match"][seed][loc] /
                    repeat_results["location_counter"][seed][loc])
                total_count += repeat_results["location_counter"][seed][loc]
                markable_location_plot.append(loc + 1)
                exact_match_rate_plot.append(
                    repeat_results["location_exact_match"][seed][loc] /
                    repeat_results["location_counter"][seed][loc])
                accuracy_plot.append(
                    repeat_results["location_correct"][seed][loc] /
                    (7 * repeat_results["location_counter"][seed][loc]))
        if len(exact_match_rate) > 0:
            print('Loc @ {}: {:.5f} (std {:.5f}) (valid runs: {}, total: {})'.
                  format(loc + 1, np.mean(exact_match_rate),
                         np.std(exact_match_rate), len(exact_match_rate),
                         total_count))

    plt.xlabel('markable location', fontsize=14)
    plt.ylabel('exact match rate', fontsize=14)
    sns.lineplot(x=markable_location_plot, y=exact_match_rate_plot)
    plt.savefig('location_exact_match_rate.png', dpi=300)
    plt.clf()

    plt.xlabel('markable location', fontsize=14)
    plt.ylabel('accuracy', fontsize=14)
    sns.lineplot(x=markable_location_plot, y=accuracy_plot)
    plt.savefig('location_accuracy.png', dpi=300)
    plt.clf()

    plt.xlabel('markable position', fontsize=14)
    plt.ylabel('percentage', fontsize=14)
    sns.lineplot(x=markable_location_plot,
                 y=accuracy_plot,
                 legend="brief",
                 label="accuracy")
    sns.lineplot(x=markable_location_plot,
                 y=exact_match_rate_plot,
                 legend="brief",
                 label="exact match")
    plt.savefig('location_results.png', dpi=300)
    plt.clf()

    print("compute results based on initial token:")
    #for tok in model.word_dict.w2i.keys():
    definite_toks = ["the"]
    indefinite_toks = ["a", "an"]
    definite_accuracies = []
    indefinite_accuracies = []
    other_accuracies = []
    definite_exact_matches = []
    indefinite_exact_matches = []
    other_exact_matches = []
    definite_counts = []
    indefinite_counts = []
    other_counts = []
    for seed in range(len(seeds)):
        num_correct = 0
        num_exact_match = 0
        num_total = 0
        for tok in definite_toks:
            num_total += repeat_results["init_counter"][seed][tok]
            num_correct += repeat_results["init_correct"][seed][tok]
            num_exact_match += repeat_results["init_exact_match"][seed][tok]
        definite_accuracies.append(num_correct / (7 * num_total))
        definite_exact_matches.append(num_exact_match / num_total)
        definite_counts.append(num_total)

        num_correct = 0
        num_exact_match = 0
        num_total = 0
        for tok in indefinite_toks:
            num_total += repeat_results["init_counter"][seed][tok]
            num_correct += repeat_results["init_correct"][seed][tok]
            num_exact_match += repeat_results["init_exact_match"][seed][tok]
        indefinite_accuracies.append(num_correct / (7 * num_total))
        indefinite_exact_matches.append(num_exact_match / num_total)
        indefinite_counts.append(num_total)

        num_correct = 0
        num_exact_match = 0
        num_total = 0
        for tok in repeat_results["init_counter"][seed].keys():
            if tok not in definite_toks + indefinite_toks:
                num_total += repeat_results["init_counter"][seed][tok]
                num_correct += repeat_results["init_correct"][seed][tok]
                num_exact_match += repeat_results["init_exact_match"][seed][
                    tok]
        other_accuracies.append(num_correct / (7 * num_total))
        other_exact_matches.append(num_exact_match / num_total)
        other_counts.append(num_total)

    print(
        "definite: accuracies {} (std {}), exact match rate {} (std {}), total count {} (std {})"
        .format(np.mean(definite_accuracies), np.std(definite_accuracies),
                np.mean(definite_exact_matches),
                np.std(definite_exact_matches), np.mean(definite_counts),
                np.std(definite_counts)))

    print(
        "indefinite: accuracies {} (std {}), exact match rate {} (std {}), total count {} (std {})"
        .format(np.mean(indefinite_accuracies), np.std(indefinite_accuracies),
                np.mean(indefinite_exact_matches),
                np.std(indefinite_exact_matches), np.mean(indefinite_counts),
                np.std(indefinite_counts)))

    print(
        "other: accuracies {} (std {}), exact match rate {} (std {}), total count {} (std {})"
        .format(np.mean(other_accuracies), np.std(other_accuracies),
                np.mean(other_exact_matches), np.std(other_exact_matches),
                np.mean(other_counts), np.std(other_counts)))

    valid_markables = 0
    for chat_id in model_referent_annotation.keys():
        for markable_id in model_referent_annotation[chat_id].keys():
            if 'unidentifiable' in aggregated_referent_annotation[chat_id][
                    markable_id] and aggregated_referent_annotation[chat_id][
                        markable_id]['unidentifiable']:
                continue
            valid_markables += 1
    print("model valid markables: {}".format(valid_markables))

    valid_markables = 0
    for chat_id in aggregated_referent_annotation.keys():
        for markable_id in aggregated_referent_annotation[chat_id].keys():
            if 'unidentifiable' in aggregated_referent_annotation[chat_id][
                    markable_id] and aggregated_referent_annotation[chat_id][
                        markable_id]['unidentifiable']:
                continue
            valid_markables += 1
    print("aggregated valid markables: {}".format(valid_markables))
コード例 #29
0
    def __init__(self, word_dict, item_dict, context_dict, count_dict, args):
        super(RnnVariationalModel, self).__init__()

        domain = get_domain(args.domain)

        self.word_dict = word_dict
        self.item_dict = item_dict
        self.context_dict = context_dict
        self.count_dict = count_dict
        self.args = args

        self.word_encoder = nn.Embedding(len(self.word_dict), args.nembed_word)
        self.word_encoder_dropout = nn.Dropout(args.dropout)

        ctx_encoder_ty = MlpContextEncoder
        self.ctx_encoder = nn.Sequential(
            ctx_encoder_ty(len(self.context_dict), domain.input_length(),
                           args.nembed_ctx, args.nhid_ctx, args.dropout,
                           args.init_range), nn.Dropout(args.dropout))

        # Encoder GRU outputs
        self.reader = nn.GRU(args.nhid_ctx + args.nembed_word,
                             args.nhid_lang * 2,
                             bias=True)
        self.reader_dropout = nn.Dropout(args.dropout)

        self.decoder = nn.Sequential(
            nn.Linear(args.nhid_lang, args.nembed_word),
            nn.Dropout(args.dropout))

        self.writer = nn.GRUCell(input_size=args.nhid_ctx + args.nembed_word,
                                 hidden_size=args.nhid_lang,
                                 bias=True)

        # Tie the weights of reader and writer
        self.writer.weight_ih = self.reader.weight_ih_l0
        self.writer.weight_hh = self.reader.weight_hh_l0
        self.writer.bias_ih = self.reader.bias_ih_l0
        self.writer.bias_hh = self.reader.bias_hh_l0

        self.sel_rnn = nn.GRU(input_size=args.nhid_lang + args.nembed_word,
                              hidden_size=args.nhid_attn,
                              bias=True,
                              bidirectional=True)
        self.sel_dropout = nn.Dropout(args.dropout)

        # Mask for disabling special tokens when generating sentences
        self.special_token_mask = torch.FloatTensor(len(self.word_dict))

        self.sel_encoder = nn.Sequential(
            torch.nn.Linear(2 * args.nhid_attn + args.nhid_ctx, args.nhid_sel),
            nn.Tanh(), nn.Dropout(args.dropout))
        self.attn = nn.Sequential(
            torch.nn.Linear(2 * args.nhid_attn, args.nhid_attn), nn.Tanh(),
            torch.nn.Linear(args.nhid_attn, 1))
        self.sel_decoders = nn.ModuleList()
        for i in range(domain.selection_length()):
            self.sel_decoders.append(
                nn.Linear(args.nhid_sel, len(self.item_dict)))

        self.init_weights()

        self.special_token_mask = make_mask(len(word_dict), [
            word_dict.get_idx(w) for w in ['<unk>', 'YOU:', 'THEM:', '<pad>']
        ])