コード例 #1
0
def get_model_by_type(model_type, cfg):
    from donkeycar.parts.keras import KerasRNN_LSTM, KerasBehavioral, KerasCategorical, KerasIMU, KerasLinear, Keras3D_CNN, KerasLocalizer, KerasLatent
 
    if model_type is None:
        model_type = "categorical"

    input_shape = (cfg.IMAGE_H, cfg.IMAGE_W, cfg.IMAGE_DEPTH)
    roi_crop = (cfg.ROI_CROP_TOP, cfg.ROI_CROP_BOTTOM)

    if model_type == "localizer" or cfg.TRAIN_LOCALIZER:
        kl = KerasLocalizer(num_outputs=2, num_behavior_inputs=len(cfg.BEHAVIOR_LIST), num_locations=cfg.NUM_LOCATIONS, input_shape=input_shape)
    elif model_type == "behavior" or cfg.TRAIN_BEHAVIORS:
        kl = KerasBehavioral(num_outputs=2, num_behavior_inputs=len(cfg.BEHAVIOR_LIST), input_shape=input_shape)        
    elif model_type == "imu":
        kl = KerasIMU(num_outputs=2, num_imu_inputs=6, input_shape=input_shape)        
    elif model_type == "linear":
        kl = KerasLinear(input_shape=input_shape, roi_crop=roi_crop)
    elif model_type == "3d":
        kl = Keras3D_CNN(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, seq_length=cfg.SEQUENCE_LENGTH)
    elif model_type == "rnn":
        kl = KerasRNN_LSTM(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, seq_length=cfg.SEQUENCE_LENGTH)
    elif model_type == "categorical":
        kl = KerasCategorical(input_shape=input_shape, throttle_range=cfg.MODEL_CATEGORICAL_MAX_THROTTLE_RANGE, roi_crop=roi_crop)
    elif model_type == "latent":
        kl = KerasLatent(input_shape=input_shape)
    else:
        raise Exception("unknown model type: %s" % model_type)

    return kl
コード例 #2
0
ファイル: utils.py プロジェクト: vivekchand/donkey
def get_model_by_type(model_type, cfg):
    from donkeycar.parts.keras import KerasRNN_LSTM, KerasBehavioral, KerasCategorical, KerasIMU, KerasLinear, Keras3D_CNN

    if model_type is None:
        model_type = "categorical"

    input_shape = (cfg.IMAGE_H, cfg.IMAGE_W, cfg.IMAGE_DEPTH)

    if model_type == "behavior" or cfg.TRAIN_BEHAVIORS:
        kl = KerasBehavioral(num_outputs=2,
                             num_behavior_inputs=len(cfg.BEHAVIOR_LIST),
                             input_shape=input_shape)
    elif model_type == "imu":
        kl = KerasIMU(num_outputs=2, num_imu_inputs=6, input_shape=input_shape)
    elif model_type == "linear":
        kl = KerasLinear(input_shape=input_shape)
    elif model_type == "3d":
        kl = Keras3D_CNN(image_w=cfg.IMAGE_W,
                         image_h=cfg.IMAGE_H,
                         image_d=cfg.IMAGE_DEPTH,
                         seq_length=cfg.SEQUENCE_LENGTH)
    elif model_type == "rnn":
        kl = KerasRNN_LSTM(seq_length=cfg.SEQUENCE_LENGTH,
                           input_shape=input_shape)
    elif model_type == "categorical":
        kl = KerasCategorical(input_shape=input_shape)
    else:
        raise Exception("unknown model type: %s" % model_type)

    return kl
コード例 #3
0
ファイル: utils.py プロジェクト: gis81576/donkeycar
def get_model_by_type(model_type, cfg):
    '''
    given the string model_type and the configuration settings in cfg
    create a Keras model and return it.
    '''
    from donkeycar.parts.keras import KerasRNN_LSTM, KerasBehavioral, KerasCategorical, KerasIMU, KerasLinear, Keras3D_CNN, KerasLocalizer, KerasLatent
    from donkeycar.parts.tflite import TFLitePilot

    if model_type is None:
        model_type = cfg.DEFAULT_MODEL_TYPE
    print("\"get_model_by_type\" model Type is: {}".format(model_type))

    input_shape = (cfg.IMAGE_H, cfg.IMAGE_W, cfg.IMAGE_DEPTH)
    roi_crop = (cfg.ROI_CROP_TOP, cfg.ROI_CROP_BOTTOM)

    if model_type == "tflite_linear":
        kl = TFLitePilot()
    elif model_type == "localizer" or cfg.TRAIN_LOCALIZER:
        kl = KerasLocalizer(num_outputs=2,
                            num_behavior_inputs=len(cfg.BEHAVIOR_LIST),
                            num_locations=cfg.NUM_LOCATIONS,
                            input_shape=input_shape)
    elif model_type == "behavior" or cfg.TRAIN_BEHAVIORS:
        kl = KerasBehavioral(num_outputs=2,
                             num_behavior_inputs=len(cfg.BEHAVIOR_LIST),
                             input_shape=input_shape)
    elif model_type == "imu":
        kl = KerasIMU(num_outputs=2, num_imu_inputs=6, input_shape=input_shape)
    elif model_type == "linear":
        kl = KerasLinear(input_shape=input_shape, roi_crop=roi_crop)
    elif model_type == "tensorrt_linear":
        # Aggressively lazy load this. This module imports pycuda.autoinit which causes a lot of unexpected things
        # to happen when using TF-GPU for training.
        from donkeycar.parts.tensorrt import TensorRTLinear
        kl = TensorRTLinear(cfg=cfg)
    elif model_type == "3d":
        kl = Keras3D_CNN(image_w=cfg.IMAGE_W,
                         image_h=cfg.IMAGE_H,
                         image_d=cfg.IMAGE_DEPTH,
                         seq_length=cfg.SEQUENCE_LENGTH)
    elif model_type == "rnn":
        kl = KerasRNN_LSTM(image_w=cfg.IMAGE_W,
                           image_h=cfg.IMAGE_H,
                           image_d=cfg.IMAGE_DEPTH,
                           seq_length=cfg.SEQUENCE_LENGTH)
    elif model_type == "categorical":
        kl = KerasCategorical(
            input_shape=input_shape,
            throttle_range=cfg.MODEL_CATEGORICAL_MAX_THROTTLE_RANGE,
            roi_crop=roi_crop)
    elif model_type == "latent":
        kl = KerasLatent(input_shape=input_shape)
    else:
        raise Exception("unknown model type: %s" % model_type)

    return kl
コード例 #4
0
def train(cfg, tub_names, model_name):
    '''
    use the specified data in tub_names to train an artifical neural network
    saves the output trained model as model_name
    '''
    X_keys = ['cam/image_array', 'imu_array']
    y_keys = ['user/angle', 'user/throttle']

    def rt(rec):
        rec['imu_array'] = np.array([
            rec['imu/acl_x'], rec['imu/acl_y'], rec['imu/acl_z'],
            rec['imu/gyr_x'], rec['imu/gyr_y'], rec['imu/gyr_z'],
            rec['imu/temp']
        ])
        return rec

    kl = KerasIMU()
    print('tub_names', tub_names)
    if not tub_names:
        tub_names = os.path.join(cfg.DATA_PATH, '*')
    tubgroup = TubGroup(tub_names)
    train_gen, val_gen = tubgroup.get_train_val_gen(
        X_keys,
        y_keys,
        record_transform=rt,
        batch_size=cfg.BATCH_SIZE,
        train_frac=cfg.TRAIN_TEST_SPLIT)

    model_path = os.path.expanduser(model_name)

    total_records = len(tubgroup.df)
    total_train = int(total_records * cfg.TRAIN_TEST_SPLIT)
    total_val = total_records - total_train
    print('train: %d, validation: %d' % (total_train, total_val))
    steps_per_epoch = total_train // cfg.BATCH_SIZE
    print('steps_per_epoch', steps_per_epoch)

    kl.train(train_gen,
             val_gen,
             saved_model_path=model_path,
             steps=steps_per_epoch,
             train_split=cfg.TRAIN_TEST_SPLIT)
コード例 #5
0
def train(cfg, tub_names, model_name):
    '''
    use the specified data in tub_names to train an artifical neural network
    saves the output trained model as model_name
    '''
    X_keys = ['cam/image_array', 'imu/imu_vec']
    y_keys = ['user/angle', 'user/throttle']

    def rt(record):
        #record['user/angle'] = dk.utils.linear_bin(record['user/angle']) # Comment out if angle is not binned
        record['imu/imu_vec'] = np.array(
            ast.literal_eval(record['imu/imu_vec'].split('/')[-1]))
        return record

    #kl = KerasCategorical()
    kl = KerasIMU()
    print('tub_names', tub_names)
    if not tub_names:
        tub_names = os.path.join(cfg.DATA_PATH, '*')
    tubgroup = TubGroup(tub_names)
    train_gen, val_gen = tubgroup.get_train_val_gen(
        X_keys,
        y_keys,
        record_transform=rt,
        batch_size=cfg.BATCH_SIZE,
        train_frac=cfg.TRAIN_TEST_SPLIT)

    model_path = os.path.expanduser(model_name)

    total_records = len(tubgroup.df)
    total_train = int(total_records * cfg.TRAIN_TEST_SPLIT)
    total_val = total_records - total_train
    print('train: %d, validation: %d' % (total_train, total_val))
    steps_per_epoch = total_train // cfg.BATCH_SIZE
    print('steps_per_epoch', steps_per_epoch)

    kl.train(train_gen,
             val_gen,
             saved_model_path=model_path,
             steps=steps_per_epoch,
             train_split=cfg.TRAIN_TEST_SPLIT)
コード例 #6
0
def test_KerasIMU():
    k = KerasIMU(num_outputs=2, num_imu_inputs=7)
    assert k.model is not None
コード例 #7
0
def drive(cfg, model_path=None, use_joystick=False):
    '''
    Construct a working robotic vehicle from many parts.
    Each part runs as a job in the Vehicle loop, calling either
    it's run or run_threaded method depending on the constructor flag `threaded`.
    All parts are updated one after another at the framerate given in
    cfg.DRIVE_LOOP_HZ assuming each part finishes processing in a timely manner.
    Parts may have named outputs and inputs. The framework handles passing named outputs
    to parts requesting the same named input.
    '''

    #Initialize car
    V = dk.vehicle.Vehicle()
    cam = PiCamera(resolution=cfg.CAMERA_RESOLUTION)
    V.add(cam, outputs=['cam/image_array'], threaded=True)

    imu = Mpu6050()
    V.add(imu, outputs=['imu/imu_vec'], threaded=True)

    # Lidar
    imu = B0602Lidar()
    V.add(imu, outputs=['lidar/lidar_measurements'], threaded=True)

    if use_joystick or cfg.USE_JOYSTICK_AS_DEFAULT:
        #modify max_throttle closer to 1.0 to have more power
        #modify steering_scale lower than 1.0 to have less responsive steering
        ctr = JoystickController(
            max_throttle=cfg.JOYSTICK_MAX_THROTTLE,
            steering_scale=cfg.JOYSTICK_STEERING_SCALE,
            auto_record_on_throttle=cfg.AUTO_RECORD_ON_THROTTLE)
    else:
        #This web controller will create a web server that is capable
        #of managing steering, throttle, and modes, and more.
        ctr = LocalWebController()

    V.add(ctr,
          inputs=['cam/image_array'],
          outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],
          threaded=True)

    #See if we should even run the pilot module.
    #This is only needed because the part run_condition only accepts boolean
    def pilot_condition(mode):
        if mode == 'user':
            return False
        else:
            return True

    pilot_condition_part = Lambda(pilot_condition)
    V.add(pilot_condition_part, inputs=['user/mode'], outputs=['run_pilot'])

    # Add CV Here
    #img_threshold = ImgThreshold()
    #V.add(img_threshold, inputs=['cam/image_array'], outputs=['cam/image_array'])

    #img_grayscale = ImgGreyscale()
    #V.add(img_grayscale, inputs=['cam/image_array'], outputs=['cam/image_array'])

    #img_canny = ImgCanny()
    #V.add(img_canny, inputs=['cam/image_array'], outputs=['cam/image_array'])

    # Make sure image size is correct
    #xsize = 160
    #ysize = 120
    #vertices = np.array([[(0,48),(xsize,48),(xsize,ysize),(0,ysize)]], dtype=np.int32)
    #img_mask = ImgMask(vertices)
    #V.add(img_mask, inputs=['cam/image_array'], outputs=['cam/image_array'])

    #img_stack = ImgStack()
    #V.add(img_stack, inputs=['cam/image_array'], outputs=['cam/image_array'])

    #Run the pilot if the mode is not user.
    #kl = KerasCategorical()
    kl = KerasIMU()
    if model_path:
        kl.load(model_path)

    V.add(kl,
          inputs=['cam/image_array', 'imu/imu_vec'],
          outputs=['pilot/angle', 'pilot/throttle'],
          run_condition='run_pilot')

    #Choose what inputs should change the car.
    def drive_mode(mode, user_angle, user_throttle, pilot_angle,
                   pilot_throttle):
        if mode == 'user':
            return user_angle, user_throttle

        elif mode == 'local_angle':
            return pilot_angle, user_throttle

        else:
            return pilot_angle, pilot_throttle

    drive_mode_part = Lambda(drive_mode)
    V.add(drive_mode_part,
          inputs=[
              'user/mode', 'user/angle', 'user/throttle', 'pilot/angle',
              'pilot/throttle'
          ],
          outputs=['angle', 'throttle'])

    steering_controller = PCA9685(cfg.STEERING_CHANNEL)
    steering = PWMSteering(controller=steering_controller,
                           left_pulse=cfg.STEERING_LEFT_PWM,
                           right_pulse=cfg.STEERING_RIGHT_PWM)

    throttle_controller = PCA9685(cfg.THROTTLE_CHANNEL)
    throttle = PWMThrottle(controller=throttle_controller,
                           max_pulse=cfg.THROTTLE_FORWARD_PWM,
                           zero_pulse=cfg.THROTTLE_STOPPED_PWM,
                           min_pulse=cfg.THROTTLE_REVERSE_PWM)

    V.add(steering, inputs=['angle'])
    V.add(throttle, inputs=['throttle'])

    #add tub to save data
    inputs = [
        'cam/image_array', 'user/angle', 'user/throttle', 'user/mode',
        'imu/imu_vec'
    ]
    types = ['image_array', 'float', 'float', 'str', 'list']

    th = TubHandler(path=cfg.DATA_PATH)
    tub = th.new_tub_writer(inputs=inputs, types=types)
    V.add(tub, inputs=inputs, run_condition='recording')

    #run the vehicle
    V.start(rate_hz=cfg.DRIVE_LOOP_HZ, max_loop_count=cfg.MAX_LOOPS)

    print("You can now go to <your pi ip address>:8887 to drive your car.")
コード例 #8
0
def drive(cfg,
          model_path=None,
          use_joystick=False,
          model_type=None,
          camera_type='single'):
    '''
    Construct a working robotic vehicle from many parts.
    Each part runs as a job in the Vehicle loop, calling either
    it's run or run_threaded method depending on the constructor flag `threaded`.
    All parts are updated one after another at the framerate given in
    cfg.DRIVE_LOOP_HZ assuming each part finishes processing in a timely manner.
    Parts may have named outputs and inputs. The framework handles passing named outputs
    to parts requesting the same named input.
    '''

    if model_type is None:
        model_type = "categorical"

    stereo_cam = camera_type == "stereo"

    #Initialize car
    V = dk.vehicle.Vehicle()

    if stereo_cam:
        from donkeycar.parts.camera import Webcam

        camA = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, iCam=0)
        V.add(camA, outputs=['cam/image_array_a'], threaded=True)

        camB = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, iCam=1)
        V.add(camB, outputs=['cam/image_array_b'], threaded=True)

        def stereo_pair(image_a, image_b):
            if image_a is not None and image_b is not None:
                width, height, _ = image_a.shape
                grey_a = dk.utils.rgb2gray(image_a)
                grey_b = dk.utils.rgb2gray(image_b)
                # Added by Felix
                depth = capture.stereo_depth(image_a, image_b, leftMapX,
                                             leftMapY, rightMapX, rightMapY,
                                             leftROI, rightROI, imageSize)

                stereo_image = np.zeros([width, height, 3],
                                        dtype=np.dtype('B'))
                stereo_image[..., 0] = np.reshape(grey_a, (width, height))
                stereo_image[..., 1] = np.reshape(grey_b, (width, height))
                stereo_image[..., 2] = np.reshape(depth, (width, height))
                # --------------

            else:
                stereo_image = []

            return np.array(stereo_image)

        image_sterero_pair_part = Lambda(stereo_pair)
        V.add(image_sterero_pair_part,
              inputs=['cam/image_array_a', 'cam/image_array_b'],
              outputs=['cam/image_array'])

    else:

        print("cfg.CAMERA_TYPE", cfg.CAMERA_TYPE)
        if cfg.CAMERA_TYPE == "PICAM":
            from donkeycar.parts.camera import PiCamera
            cam = PiCamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H)
        elif cfg.CAMERA_TYPE == "WEBCAM":
            from donkeycar.parts.camera import Webcam
            cam = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H)

        V.add(cam, outputs=['cam/image_array'], threaded=True)

    if use_joystick or cfg.USE_JOYSTICK_AS_DEFAULT:
        #modify max_throttle closer to 1.0 to have more power
        #modify steering_scale lower than 1.0 to have less responsive steering
        ctr = JoystickController(
            throttle_scale=cfg.JOYSTICK_MAX_THROTTLE,
            steering_scale=cfg.JOYSTICK_STEERING_SCALE,
            auto_record_on_throttle=cfg.AUTO_RECORD_ON_THROTTLE)
    else:
        #This web controller will create a web server that is capable
        #of managing steering, throttle, and modes, and more.
        ctr = LocalWebController()

    V.add(ctr,
          inputs=['cam/image_array'],
          outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],
          threaded=True)

    #this throttle filter will allow one tap back for esc reverse
    th_filter = ThrottleFilter()
    V.add(th_filter, inputs=['user/throttle'], outputs=['user/throttle'])

    #See if we should even run the pilot module.
    #This is only needed because the part run_condition only accepts boolean
    def pilot_condition(mode):
        if mode == 'user':
            return False
        else:
            return True

    pilot_condition_part = Lambda(pilot_condition)
    V.add(pilot_condition_part, inputs=['user/mode'], outputs=['run_pilot'])

    def led_cond(mode, recording, num_records, behavior_state):
        '''
        returns a blink rate. 0 for off. -1 for on. positive for rate.
        '''

        if num_records is not None and num_records % 10 == 0:
            print("recorded", num_records, "records")

        if behavior_state is not None and model_type == 'behavior':
            r, g, b = cfg.BEHAVIOR_LED_COLORS[behavior_state]
            led.set_rgb(r, g, b)
            return -1  #solid on

        if recording:
            return -1  #solid on
        elif mode == 'user':
            return 1
        elif mode == 'local_angle':
            return 0.5
        elif mode == 'local':
            return 0.1
        return 0

    led_cond_part = Lambda(led_cond)
    V.add(
        led_cond_part,
        inputs=['user/mode', 'recording', "tub/num_records", 'behavior/state'],
        outputs=['led/blink_rate'])

    if cfg.HAVE_RGB_LED:
        from donkeycar.parts.led_status import RGB_LED
        led = RGB_LED(cfg.LED_PIN_R, cfg.LED_PIN_G, cfg.LED_PIN_B,
                      cfg.LED_INVERT)
        led.set_rgb(cfg.LED_R, cfg.LED_G, cfg.LED_B)
        V.add(led, inputs=['led/blink_rate'])

    #IMU
    if cfg.HAVE_IMU:
        imu = Mpu6050()
        V.add(imu,
              outputs=[
                  'imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x',
                  'imu/gyr_y', 'imu/gyr_z'
              ],
              threaded=True)

    #Behavioral state
    if model_type == "behavior":
        bh = BehaviorPart(cfg.BEHAVIOR_LIST)
        V.add(bh,
              outputs=[
                  'behavior/state', 'behavior/label',
                  "behavior/one_hot_state_array"
              ])
        try:
            ctr.set_button_down_trigger('L1', bh.increment_state)
        except:
            pass

        kl = KerasBehavioral(num_outputs=2,
                             num_behavior_inputs=len(cfg.BEHAVIOR_LIST))
        inputs = ['cam/image_array', "behavior/one_hot_state_array"]
    #IMU
    elif model_type == "imu":
        assert (cfg.HAVE_IMU)
        #Run the pilot if the mode is not user.
        kl = KerasIMU(num_outputs=2, num_imu_inputs=6)
        inputs = [
            'cam/image_array', 'imu/acl_x', 'imu/acl_y', 'imu/acl_z',
            'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'
        ]
    else:
        if model_type == "linear":
            kl = KerasLinear()
        elif model_type == "3d":
            kl = Keras3D_CNN(seq_length=cfg.SEQUENCE_LENGTH)
        elif model_type == "rnn":
            kl = KerasRNN_LSTM(seq_length=cfg.SEQUENCE_LENGTH)
        else:
            kl = KerasCategorical()

        inputs = ['cam/image_array']

    if model_path:
        kl.load(model_path)

    V.add(kl,
          inputs=inputs,
          outputs=['pilot/angle', 'pilot/throttle'],
          run_condition='run_pilot')

    #Choose what inputs should change the car.
    def drive_mode(mode, user_angle, user_throttle, pilot_angle,
                   pilot_throttle):
        if mode == 'user':
            return user_angle, user_throttle

        elif mode == 'local_angle':
            return pilot_angle, user_throttle

        else:
            return pilot_angle, pilot_throttle

    drive_mode_part = Lambda(drive_mode)
    V.add(drive_mode_part,
          inputs=[
              'user/mode', 'user/angle', 'user/throttle', 'pilot/angle',
              'pilot/throttle'
          ],
          outputs=['angle', 'throttle'])

    steering_controller = PCA9685(cfg.STEERING_CHANNEL,
                                  cfg.PCA9685_I2C_ADDR,
                                  busnum=cfg.PCA9685_I2C_BUSNUM)
    steering = PWMSteering(controller=steering_controller,
                           left_pulse=cfg.STEERING_LEFT_PWM,
                           right_pulse=cfg.STEERING_RIGHT_PWM)

    throttle_controller = PCA9685(cfg.THROTTLE_CHANNEL,
                                  cfg.PCA9685_I2C_ADDR,
                                  busnum=cfg.PCA9685_I2C_BUSNUM)
    throttle = PWMThrottle(controller=throttle_controller,
                           max_pulse=cfg.THROTTLE_FORWARD_PWM,
                           zero_pulse=cfg.THROTTLE_STOPPED_PWM,
                           min_pulse=cfg.THROTTLE_REVERSE_PWM)

    V.add(steering, inputs=['angle'])
    V.add(throttle, inputs=['throttle'])

    #add tub to save data

    inputs = ['cam/image_array', 'user/angle', 'user/throttle', 'user/mode']

    types = ['image_array', 'float', 'float', 'str']

    if cfg.TRAIN_BEHAVIORS:
        inputs += [
            'behavior/state', 'behavior/label', "behavior/one_hot_state_array"
        ]
        types += ['int', 'str', 'vector']

    if cfg.HAVE_IMU:
        inputs += [
            'imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y',
            'imu/gyr_z'
        ]

        types += ['float', 'float', 'float', 'float', 'float', 'float']

    th = TubHandler(path=cfg.DATA_PATH)
    tub = th.new_tub_writer(inputs=inputs, types=types)
    V.add(tub,
          inputs=inputs,
          outputs=["tub/num_records"],
          run_condition='recording')

    if type(ctr) is LocalWebController:
        print("You can now go to <your pi ip address>:8887 to drive your car.")
    elif type(ctr) is JoystickController:
        print("You can now move your joystick to drive your car.")
        #tell the controller about the tub
        ctr.set_tub(tub)

    #run the vehicle for 20 seconds
    V.start(rate_hz=cfg.DRIVE_LOOP_HZ, max_loop_count=cfg.MAX_LOOPS)
コード例 #9
0
def get_model_by_type(model_type: str, cfg: 'Config') -> 'KerasPilot':
    '''
    given the string model_type and the configuration settings in cfg
    create a Keras model and return it.
    '''
    from donkeycar.parts.keras import KerasCategorical, KerasLinear, \
        KerasInferred, KerasIMU, KerasMemory, KerasBehavioral, KerasLocalizer, \
        KerasLSTM, Keras3D_CNN
    from donkeycar.parts.interpreter import KerasInterpreter, TfLite, TensorRT

    if model_type is None:
        model_type = cfg.DEFAULT_MODEL_TYPE
    logger.info(f'get_model_by_type: model type is: {model_type}')
    input_shape = (cfg.IMAGE_H, cfg.IMAGE_W, cfg.IMAGE_DEPTH)
    if 'tflite_' in model_type:
        interpreter = TfLite()
        used_model_type = model_type.replace('tflite_', '')
    elif 'tensorrt_' in model_type:
        interpreter = TensorRT()
        used_model_type = model_type.replace('tensorrt_', '')
    else:
        interpreter = KerasInterpreter()
        used_model_type = model_type
    used_model_type = EqMemorizedString(used_model_type)
    if used_model_type == "linear":
        kl = KerasLinear(interpreter=interpreter, input_shape=input_shape)
    elif used_model_type == "categorical":
        kl = KerasCategorical(
            interpreter=interpreter,
            input_shape=input_shape,
            throttle_range=cfg.MODEL_CATEGORICAL_MAX_THROTTLE_RANGE)
    elif used_model_type == 'inferred':
        kl = KerasInferred(interpreter=interpreter, input_shape=input_shape)
    elif used_model_type == "imu":
        kl = KerasIMU(interpreter=interpreter, input_shape=input_shape)
    elif used_model_type == "memory":
        mem_length = getattr(cfg, 'SEQUENCE_LENGTH', 3)
        mem_depth = getattr(cfg, 'MEM_DEPTH', 0)
        kl = KerasMemory(interpreter=interpreter,
                         input_shape=input_shape,
                         mem_length=mem_length,
                         mem_depth=mem_depth)
    elif used_model_type == "behavior":
        kl = KerasBehavioral(
            interpreter=interpreter,
            input_shape=input_shape,
            throttle_range=cfg.MODEL_CATEGORICAL_MAX_THROTTLE_RANGE,
            num_behavior_inputs=len(cfg.BEHAVIOR_LIST))
    elif used_model_type == 'localizer':
        kl = KerasLocalizer(interpreter=interpreter,
                            input_shape=input_shape,
                            num_locations=cfg.NUM_LOCATIONS)
    elif used_model_type == 'rnn':
        kl = KerasLSTM(interpreter=interpreter,
                       input_shape=input_shape,
                       seq_length=cfg.SEQUENCE_LENGTH)
    elif used_model_type == '3d':
        kl = Keras3D_CNN(interpreter=interpreter,
                         input_shape=input_shape,
                         seq_length=cfg.SEQUENCE_LENGTH)
    else:
        known = [
            k + u for k in ('', 'tflite_', 'tensorrt_')
            for u in used_model_type.mem
        ]
        raise ValueError(
            f"Unknown model type {model_type}, supported types are"
            f" { ', '.join(known)}")
    return kl