コード例 #1
0
ファイル: simulator.py プロジェクト: Locke637/Doomplayer
def play():
    _vzd_path = os.path.dirname(vizdoom.__file__)
    parser = argparse.ArgumentParser(description='Doom Network')
    parser.add_argument('--action_set',
                        default='noset',
                        help='model to work with')
    parser.add_argument('--doom_instance',
                        default='map',
                        choices=('basic', 'cig', 'map'),
                        help='doom instance type')
    parser.add_argument('--vizdoom_config',
                        default='../environments/cig_test.cfg',
                        help='vizdoom config path')
    parser.add_argument('--vizdoom_path',
                        default=_vzd_path,
                        help='path to vizdoom')
    parser.add_argument('--wad_path',
                        default=_vzd_path + '/freedoom2.wad',
                        help='wad file path')
    parser.add_argument('--skiprate',
                        type=int,
                        default=1,
                        help='number of skipped frames')
    parser.add_argument('--frame_num',
                        type=int,
                        default=1,
                        help='number of frames per input')
    parser.add_argument('--checkpoint_file',
                        default=None,
                        help='check point file name')
    parser.add_argument('--checkpoint_rate',
                        type=int,
                        default=500,
                        help='number of batches per checkpoit')
    parser.add_argument('--bot_cmd',
                        default=None,
                        help='command to launch a bot')
    parser.add_argument('--h5_path', default=None, help='hd5 files path')
    args = parser.parse_args()
    print(args)
    init_doom_env(args)

    game = args.instance_class(args.vizdoom_config,
                               args.wad_path,
                               args.skiprate,
                               visible=True,
                               mode=vizdoom.Mode.PLAYER,
                               actions=args.action_set)

    step_state = game.get_state_normalized()
    for i in range(50):
        step_state, _, finished = game.step_normalized([0, 0, 0, 0])

    pose = game.get_pose()
    state = game.get_state_normalized()
    objects = game.get_objects(state)

    sim = Simulator(pose, objects)
    k = 1
コード例 #2
0
                        default=_vzd_path,
                        help='path to vizdoom')
    parser.add_argument('--wad_path',
                        default=_vzd_path + '/doom2.wad',
                        help='wad file path')
    parser.add_argument('--skiprate',
                        type=int,
                        default=1,
                        help='number of skipped frames')
    parser.add_argument('--frame_num',
                        type=int,
                        default=4,
                        help='number of frames per input')
    args = parser.parse_args()
    print(args)
    init_doom_env(args)

    torch.set_default_tensor_type('torch.FloatTensor')
    torch.manual_seed(args.seed)
    if USE_CUDA:
        torch.cuda.manual_seed_all(args.seed)

    model_class = {
        'aac': AdvantageActorCritic,
        'aac_lstm': AdvantageActorCriticLSTM,
        'aac_intrinsic': AdvantageActorCriticIntrinsic,
        'aac_duel': AdvantageActorCriticDuel
    }
    model = model_class[args.model](args)

    if args.load is not None and os.path.isfile(args.load):
コード例 #3
0
    parser.add_argument('--epoch_game_steps', type=int, default=10000, help='number of steps per epoch')
    parser.add_argument('--episode_discount', type=float, default=0.95, help='number of episodes for training')
    parser.add_argument('--seed', type=int, default=1, help='seed value')
    parser.add_argument(
        '--model',
        default='aac',
        choices=('aac', 'aac_lstm', 'aac_noisy', 'aac_depth', 'aac_map', 'mb_map'),
        help='model to work with')
    parser.add_argument('--base_model', default=None, help='path to base model file')
    parser.add_argument('--action_set', default=None, help='model to work with')
    parser.add_argument('--load', default=None, help='path to model file')
    parser.add_argument('--vizdoom_config', default='environments/basic.cfg', help='vizdoom config path')
    parser.add_argument('--vizdoom_path', default=_vzd_path, help='path to vizdoom')
    parser.add_argument('--wad_path', default=_vzd_path + '/freedoom2.wad', help='wad file path')
    parser.add_argument('--skiprate', type=int, default=1, help='number of skipped frames')
    parser.add_argument('--frame_num', type=int, default=1, help='number of frames per input')
    parser.add_argument('--checkpoint_file', default=None, help='check point file name')
    parser.add_argument('--checkpoint_rate', type=int, default=500, help='number of batches per checkpoit')
    parser.add_argument('--bot_cmd', default=None, help='command to launch a bot')
    parser.add_argument('--h5_path', default=None, help='hd5 files path')
    args = parser.parse_args()
    print(args)
    init_doom_env(args)

    model = get_model(args)

    if args.mode == 'train':
        model.run_train(args)
    else:
        model.run_test(args)
コード例 #4
0
ファイル: main.py プロジェクト: vishalbelsare/crlmaze
def main(_config):
    """ Main script which for running a non-stationary doom environments
        composed of multiple maps. """

    # Setting logger
    log = ex.logger
    log.setLevel(_config['log_level'].upper())

    # Printing the conf for visual check
    log.debug(
        'Exp. configurations:\n'
        '----------------------------------------------------------------\n'
        + pprint.pformat(_config) + '\n' +
        '----------------------------------------------------------------\n'
    )

    init_doom_env(_config)
    random.seed(_config['seed'])
    np.random.seed(_config['seed'])
    model = get_model(_config)

    if _config['mode'] == 'train':
        test_crew = [[] for j in range(_config['num_runs'])]
        test_std = [[] for j in range(_config['num_runs'])]

        runs_avg_crew = [[[] for i in range(len(_config['vizdoom_maps']))]
                         for j in range(len(_config['vizdoom_maps']))]

        # train with multiple runs
        for run_id in range(_config['num_runs']):
            ex.info[str(run_id)] = {'test_crew': [], 'test_std': []}
            print("\n------------------ RUN {0} -------------------"
                  .format(run_id))
            for task_id in range(len(_config['vizdoom_maps'])):
                crew, std, movavg_stats = model.run_train(task_id=task_id)
                test_crew[run_id].append(crew[-1])
                test_std[run_id].append(std[-1])
                # save results into mongodb
                ex.info[str(run_id)]['test_crew'].append(crew[-1])
                ex.info[str(run_id)]['test_std'].append(std[-1])
                ex.info[str(run_id)]['mov_avg_stats'] = movavg_stats
                ex.info[str(run_id)]['tot_crew'] = crew
                ex.info[str(run_id)]['tot_std'] = std

            # prepare for next run
            del model
            model = get_model(_config)

        # printing results
        print(
            '----------------------------------------------------------------\n'
            '                          RESULTS\n' +
            '----------------------------------------------------------------\n'
        )
        for run_id in range(_config['num_runs']):
            print("\n------------------ RUN {0} -------------------"
                  .format(run_id))
            for task_id in range(len(_config['vizdoom_maps'])):
                avg_crew = 0
                avg_std = 0
                for map_id in range(len(_config['vizdoom_maps'])):
                    # print(test_crew[run_id][task_id])
                    # print(test_std[run_id][task_id])
                    print(
                        "[run %d], [task: %d], [map: %d], "
                        "[avg. cumulated reward: %f.2f], "
                        "[dev.std: %.2f]" % (run_id, task_id, map_id,
                                             test_crew[run_id][task_id][map_id],
                                             test_std[run_id][task_id][map_id])
                    )
                    avg_crew += test_crew[run_id][task_id][map_id]
                    avg_std += test_std[run_id][task_id][map_id]
                    runs_avg_crew[task_id][map_id].append(
                        test_crew[run_id][task_id][map_id]
                    )
                avg_crew /= len(_config['vizdoom_maps'])
                avg_std /= len(_config['vizdoom_maps'])
                print("[run %d] [avg_maps_crew %.3f], [avg_maps_std %.3f]\n" %
                      (run_id, avg_crew, avg_std))

        print(
            '----------------------------------------------------------------\n'
            '                       AVG RUNS RESULTS\n' +
            '----------------------------------------------------------------\n'
        )

        for task_id in range(len(_config['vizdoom_maps'])):
            tot_avg_crew = []
            for map_id in range(len(_config['vizdoom_maps'])):
                print("[task %d], [map: %d], [runs avg_crew %.3f],"
                      " [runs std %.3f]" %
                      (task_id, map_id,
                       float(np.mean(runs_avg_crew[task_id][map_id])),
                       float(np.std(runs_avg_crew[task_id][map_id]))))

                tot_avg_crew.append(np.mean(runs_avg_crew[task_id][map_id]))

            print("[avg_runs_maps_crew %.3f], [std %.3f]\n" %
                  (float(np.mean(tot_avg_crew)), float(np.std(tot_avg_crew))))

    else:
        # we assume to have a list in load for test
        res = {}
        for model_path in _config['load']:
            res[model_path] = []
            for task_id in range(len(_config['vizdoom_maps'])):
                crew, std = model.run_test(
                    num_test_ep=_config['num_test_ep'], load=model_path,
                    seed=_config['seed'], task_id=task_id)
                res[model_path].append((crew, std))

        res = OrderedDict(sorted(res.items(), key=lambda t: t[0]))
        for model_name, vec in res.items():
            avg_crew = 0
            avg_std = 0
            for i, (crew, std) in enumerate(vec):
                print(
                    "[name %s], [map: %d], [avg. cumulated reward: %f.2f],"
                    "[dev.std: %.2f]" % (model_name, i, crew, std)
                )
                avg_crew += crew
                avg_std += std
            avg_crew /= len(res[model_name])
            avg_std /= len(res[model_name])
            print("[avg_crew %.3f], [avg_std %.3f]\n" % (avg_crew, avg_std))