def load_dataset(): # Loading the MNIST dataset data = {} x_train, x_test, y_train, y_test = load() data['x_train'], data['y_train'], data['x_test'], data[ 'y_test'] = x_train, x_test, y_train, y_test data['x_train'] = data['x_train'].reshape(60000, 784) data['x_test'] = data['x_test'].reshape(10000, 784) data['x_train'] = data['x_train'].astype(float) data['x_test'] = data['x_test'].astype(float) # Transpose the training and test datasets data['x_train'], data['x_test'] = np.transpose( data['x_train']), np.transpose(data['x_test']) return data
import math import numpy as np from download_mnist import load import operator import time # classify using kNN # x_train = np.load('../x_train.npy') # y_train = np.load('../y_train.npy') # x_test = np.load('../x_test.npy') # y_test = np.load('../y_test.npy') x_train, y_train, x_test, y_test = load() x_train = x_train.reshape(60000, 28, 28) x_test = x_test.reshape(10000, 28, 28) x_train = x_train.astype(float) x_test = x_test.astype(float) def kNNClassify(newInput, dataSet, labels, k): result = [] ######################## # Input your code here # ######################## test_len = len(newInput) # Getting the length of test images train_len = len(dataSet) # Getting the length of training images l2_distance = np.zeros((test_len, train_len)) for i in range(test_len): # Finding L2 distance of each test image for j in range(train_len): distance = np.linalg.norm( dataSet[j] - newInput[i]) # Calculating the L2 Distance l2_distance[
# import math import numpy as np from download_mnist import load # import operator import time import heapq from collections import Counter # classify using kNN # x_train = np.load('../x_train.npy') # y_train = np.load('../y_train.npy') # x_test = np.load('../x_test.npy') # y_test = np.load('../y_test.npy') x_train_ori, y_train, x_test_ori, y_test = load() x_train_ori = x_train_ori.reshape(60000, 28, 28) x_test_ori = x_test_ori.reshape(10000, 28, 28) x_train_ori = x_train_ori.astype(float) x_test_ori = x_test_ori.astype(float) # turn each entry into an 1-D array x_train = [] x_test = [] for X_pic in x_train_ori: tmp = [] for X in X_pic: tmp = np.append(tmp, X) x_train.append(tmp) for X_pic in x_test_ori: tmp = [] for X in X_pic: