def download_models(main_folder): """ This downloads all models used in this project. :param main_folder: The folder in which this file is located :return unet_folder: returns the path to the UNetNormalGen dir """ # check if the models are already there, if not download them unet_folder = os.path.abspath(os.path.join(main_folder, "UNetNormalGen")) model_folder = os.path.join(unet_folder, "model") if not os.path.exists(model_folder): print("Download all models, by running the 'download_models.py'") download_all_models() return unet_folder
def main(): parser = argparse.ArgumentParser( description='Patch-NetVLAD-Feature-Extract') parser.add_argument( '--config_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'configs/performance.ini'), help= 'File name (with extension) to an ini file that stores most of the configuration data for patch-netvlad' ) parser.add_argument( '--dataset_file_path', type=str, required=True, help= 'Full path (with extension) to a text file that stores the save location and name of all images in the dataset folder' ) parser.add_argument( '--dataset_root_dir', type=str, default='', help= 'If the files in dataset_file_path are relative, use dataset_root_dir as prefix.' ) parser.add_argument('--output_features_dir', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'output_features'), help='Path to store all patch-netvlad features') parser.add_argument('--nocuda', action='store_true', help='If true, use CPU only. Else use GPU.') opt = parser.parse_args() print(opt) configfile = opt.config_path assert os.path.isfile(configfile) config = configparser.ConfigParser() config.read(configfile) cuda = not opt.nocuda if cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run with --nocuda") device = torch.device("cuda" if cuda else "cpu") encoder_dim, encoder = get_backend() if not os.path.isfile(opt.dataset_file_path): opt.dataset_file_path = join(PATCHNETVLAD_ROOT_DIR, 'dataset_imagenames', opt.dataset_file_path) dataset = PlaceDataset(None, opt.dataset_file_path, opt.dataset_root_dir, None, config['feature_extract']) # must resume to do extraction resume_ckpt = config['global_params']['resumePath'] + config[ 'global_params']['num_pcs'] + '.pth.tar' # backup: try whether resume_ckpt is relative to PATCHNETVLAD_ROOT_DIR if not isfile(resume_ckpt): resume_ckpt = join(PATCHNETVLAD_ROOT_DIR, resume_ckpt) if not isfile(resume_ckpt): from download_models import download_all_models download_all_models(ask_for_permission=True) if isfile(resume_ckpt): print("=> loading checkpoint '{}'".format(resume_ckpt)) checkpoint = torch.load(resume_ckpt, map_location=lambda storage, loc: storage) assert checkpoint['state_dict']['WPCA.0.bias'].shape[0] == int( config['global_params']['num_pcs']) config['global_params']['num_clusters'] = str( checkpoint['state_dict']['pool.centroids'].shape[0]) model = get_model(encoder, encoder_dim, opt, config['global_params'], append_pca_layer=True) if int(config['global_params'] ['nGPU']) > 1 and torch.cuda.device_count() > 1: model.encoder = nn.DataParallel(model.encoder) # if opt.mode.lower() != 'cluster': model.pool = nn.DataParallel(model.pool) model.load_state_dict(checkpoint['state_dict']) model = model.to(device) print("=> loaded checkpoint '{}'".format(resume_ckpt, )) else: raise FileNotFoundError( "=> no checkpoint found at '{}'".format(resume_ckpt)) feature_extract(dataset, model, device, opt, config) torch.cuda.empty_cache( ) # garbage clean GPU memory, a bug can occur when Pytorch doesn't automatically clear the # memory after runs print('\n\nDone. Finished extracting and saving features')
def main(): parser = argparse.ArgumentParser(description='Patch-NetVLAD-Match-Two') parser.add_argument('--config_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'configs/performance.ini'), help='File name (with extension) to an ini file that stores most of the configuration data for patch-netvlad') parser.add_argument('--nocuda', action='store_true', help='If true, use CPU only. Else use GPU.') opt = parser.parse_args() print(opt) configfile = opt.config_path assert os.path.isfile(configfile) config = configparser.ConfigParser() config.read(configfile) cuda = not opt.nocuda if cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run with --nocuda") device = torch.device("cuda" if cuda else "cpu") encoder_dim, encoder = get_backend() # must load from a resume to do extraction resume_ckpt = config['global_params']['resumePath'] + config['global_params']['num_pcs'] + '.pth.tar' # backup: try whether resume_ckpt is relative to script path if not isfile(resume_ckpt): resume_ckpt = join(PATCHNETVLAD_ROOT_DIR, resume_ckpt) if not isfile(resume_ckpt): from download_models import download_all_models download_all_models(ask_for_permission=True) if isfile(resume_ckpt): print("=> loading checkpoint '{}'".format(resume_ckpt)) checkpoint = torch.load(resume_ckpt, map_location=lambda storage, loc: storage) assert checkpoint['state_dict']['WPCA.0.bias'].shape[0] == int(config['global_params']['num_pcs']) config['global_params']['num_clusters'] = str(checkpoint['state_dict']['pool.centroids'].shape[0]) model = get_model(encoder, encoder_dim, config['global_params'], append_pca_layer=True) if int(config['global_params']['nGPU']) > 1 and torch.cuda.device_count() > 1: model.encoder = nn.DataParallel(model.encoder) model.pool = nn.DataParallel(model.pool) model.load_state_dict(checkpoint['state_dict']) model = model.to(device) print("=> loaded checkpoint '{}'".format(resume_ckpt, )) else: raise FileNotFoundError("=> no checkpoint found at '{}'".format(resume_ckpt)) vid = cv2.VideoCapture(0) _, last_frame = vid.read() while(True): _, frame = vid.read() match_two(model, device, config, frame, last_frame, None) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break elif key & 0xFF == ord('n'): last_frame = frame vid.release() cv2.destroyAllWindows() torch.cuda.empty_cache() # garbage clean GPU memory, a bug can occur when Pytorch doesn't automatically clear the # memory after runs print('Done')
def main(): parser = argparse.ArgumentParser(description='Patch-NetVLAD-Match-Two') parser.add_argument( '--config_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'configs/performance.ini'), help= 'File name (with extension) to an ini file that stores most of the configuration data for patch-netvlad' ) parser.add_argument('--first_im_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'example_images/tokyo_db.png'), help='Full path (with extension) to an image file') parser.add_argument( '--second_im_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'example_images/tokyo_query.jpg'), help='Full path (with extension) to another image file') parser.add_argument( '--plot_save_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'results'), help= 'Path plus optional prefix pointing to a location to save the output matching plot' ) parser.add_argument('--nocuda', action='store_true', help='If true, use CPU only. Else use GPU.') opt = parser.parse_args() print(opt) configfile = opt.config_path assert os.path.isfile(configfile) config = configparser.ConfigParser() config.read(configfile) cuda = opt.nocuda if cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run with --nocuda") device = torch.device("cuda" if cuda else "cpu") encoder_dim, encoder = get_backend() # must load from a resume to do extraction resume_ckpt = config['global_params']['resumePath'] + config[ 'global_params']['num_pcs'] + '.pth.tar' model = get_model(encoder, encoder_dim, opt, config['global_params'], append_pca_layer=True) if int(config['global_params'] ['nGPU']) > 1 and torch.cuda.device_count() > 1: model.encoder = nn.DataParallel(model.encoder) # if opt.mode.lower() != 'cluster': model.pool = nn.DataParallel(model.pool) # backup: try whether resume_ckpt is relative to script path if not isfile(resume_ckpt): resume_ckpt = join(PATCHNETVLAD_ROOT_DIR, resume_ckpt) if not isfile(resume_ckpt): from download_models import download_all_models download_all_models(ask_for_permission=True) if isfile(resume_ckpt): print("=> loading checkpoint '{}'".format(resume_ckpt)) checkpoint = torch.load(resume_ckpt, map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) model = model.to(device) print("=> loaded checkpoint '{}'".format(resume_ckpt, )) else: raise FileNotFoundError( "=> no checkpoint found at '{}'".format(resume_ckpt)) match_two(model, device, opt, config) torch.cuda.empty_cache( ) # garbage clean GPU memory, a bug can occur when Pytorch doesn't automatically clear the # memory after runs print('Done')