コード例 #1
0
ファイル: model.py プロジェクト: zyg11/RANSAC-Flow
 def __init__(self):
     
     self.inplanes = 64
     super(FeatureExtractor, self).__init__()
     self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
                                      
                                      
     
     self.bn1 = nn.BatchNorm2d(64, eps=1e-05)
     self.relu = nn.ReLU(inplace=True)
     self.maxpool = nn.Sequential(*[nn.MaxPool2d(kernel_size=2, stride=1), 
                                     Downsample(filt_size=3, stride=2, channels=64)])
     self.layer1 = self._make_layer(BasicBlock, 64, 2)
     self.layer2 = self._make_layer(BasicBlock, 128, 2, stride=2)
     self.layer3 = self._make_layer(BasicBlock, 256, 2, stride=2)
     
     for m in self.modules():
         if isinstance(m, nn.Conv2d):
             if(m.in_channels!=m.out_channels or m.out_channels!=m.groups or m.bias is not None):
                 # don't want to reinitialize downsample layers, code assuming normal conv layers will not have these characteristics
                 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
             else:
                 print('Not initializing')
         elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
             nn.init.constant_(m.weight, 1)
             nn.init.constant_(m.bias, 0)
コード例 #2
0
    def init_mid_model(self):
        args = self.args
        filter_dim = args.filter_dim
        latent_dim = args.filter_dim
        im_size = args.im_size

        self.mid_conv1 = nn.Conv2d(3,
                                   filter_dim,
                                   kernel_size=3,
                                   stride=1,
                                   padding=1)

        self.mid_res_1a = CondResBlock(args,
                                       filters=filter_dim,
                                       latent_dim=latent_dim,
                                       im_size=im_size,
                                       downsample=True,
                                       rescale=False,
                                       classes=1000)
        self.mid_res_1b = CondResBlock(args,
                                       filters=filter_dim,
                                       latent_dim=latent_dim,
                                       im_size=im_size,
                                       rescale=False,
                                       classes=1000)

        self.mid_res_2a = CondResBlock(args,
                                       filters=filter_dim,
                                       latent_dim=latent_dim,
                                       im_size=im_size,
                                       downsample=True,
                                       rescale=False,
                                       classes=1000)
        self.mid_res_2b = CondResBlock(args,
                                       filters=filter_dim,
                                       latent_dim=latent_dim,
                                       im_size=im_size,
                                       rescale=True,
                                       classes=1000)

        self.mid_res_3a = CondResBlock(args,
                                       filters=2 * filter_dim,
                                       latent_dim=latent_dim,
                                       im_size=im_size,
                                       downsample=False,
                                       classes=1000)
        self.mid_res_3b = CondResBlock(args,
                                       filters=2 * filter_dim,
                                       latent_dim=latent_dim,
                                       im_size=im_size,
                                       rescale=True,
                                       classes=1000)

        # self.mid_fc1 = nn.Linear(filter_dim*4, 128)
        self.mid_energy_map = nn.Linear(filter_dim * 4, 1)
        self.avg_pool = Downsample(channels=3)
コード例 #3
0
ファイル: model.py プロジェクト: zyg11/RANSAC-Flow
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = [Downsample(filt_size=3, stride=stride, channels=self.inplanes),] if(stride !=1) else []
            downsample += [conv1x1(self.inplanes, planes * block.expansion, 1), nn.BatchNorm2d(planes * block.expansion)]
            downsample = nn.Sequential(*downsample)

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, 1, None))

        return nn.Sequential(*layers)
コード例 #4
0
    def __init__(self, args):
        super(ImagenetModel, self).__init__()
        self.act = swish
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.cond = args.cond

        self.args = args
        self.init_main_model()

        if args.multiscale:
            self.init_mid_model()
            self.init_small_model()

        self.relu = torch.nn.ReLU(inplace=True)
        self.downsample = Downsample(channels=3)
        self.heir_weight = nn.Parameter(torch.Tensor([1.0, 1.0, 1.0]))
コード例 #5
0
    def __init__(self, args):
        super(ResNetModel, self).__init__()
        self.act = swish

        self.args = args
        self.spec_norm = args.spec_norm
        self.norm = args.norm
        self.init_main_model()

        if args.multiscale:
            self.init_mid_model()
            self.init_small_model()

        self.relu = torch.nn.ReLU(inplace=True)
        self.downsample = Downsample(channels=3)

        self.cond = args.cond
コード例 #6
0
    def __init__(self, args, downsample=True, rescale=True, filters=64, latent_dim=64, im_size=64, classes=512, norm=True, spec_norm=False):
        super(CondResBlock, self).__init__()

        self.filters = filters
        self.latent_dim = latent_dim
        self.im_size = im_size
        self.downsample = downsample

        if filters <= 128:
            self.bn1 = nn.InstanceNorm2d(filters, affine=True)
        else:
            self.bn1 = nn.GroupNorm(32, filters)

        if not norm:
            self.bn1 = None

        self.args = args

        if spec_norm:
            self.conv1 = spectral_norm(nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1))
        else:
            self.conv1 = WSConv2d(filters, filters, kernel_size=3, stride=1, padding=1)

        if filters <= 128:
            self.bn2 = nn.InstanceNorm2d(filters, affine=True)
        else:
            self.bn2 = nn.GroupNorm(32, filters, affine=True)

        if not norm:
            self.bn2 = None

        if spec_norm:
            self.conv2 = spectral_norm(nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1))
        else:
            self.conv2 = WSConv2d(filters, filters, kernel_size=3, stride=1, padding=1)

        self.dropout = Dropout(0.2)

        # Upscale to an mask of image
        self.latent_map = nn.Linear(classes, 2*filters)
        self.latent_map_2 = nn.Linear(classes, 2*filters)

        self.relu = torch.nn.ReLU(inplace=True)
        self.act = swish

        # Upscale to mask of image
        if downsample:
            if rescale:
                self.conv_downsample = nn.Conv2d(filters, 2 * filters, kernel_size=3, stride=1, padding=1)

                if args.alias:
                    self.avg_pool = Downsample(channels=2*filters)
                else:
                    self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
            else:
                self.conv_downsample = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1)

                if args.alias:
                    self.avg_pool = Downsample(channels=filters)
                else:
                    self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)