コード例 #1
0
 def _make_test_accountants(self):
   return [
       rdp_privacy_accountant.RdpAccountant(
           [2.0], privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE),
       rdp_privacy_accountant.RdpAccountant(
           [2.0], privacy_accountant.NeighboringRelation.REPLACE_ONE),
       rdp_privacy_accountant.RdpAccountant(
           [2.0], privacy_accountant.NeighboringRelation.REPLACE_SPECIAL)
   ]
コード例 #2
0
 def test_compute_rdp_gaussian(self):
   alpha = 3.14159
   sigma = 2.71828
   event = dp_event.GaussianDpEvent(sigma)
   accountant = rdp_privacy_accountant.RdpAccountant(orders=[alpha])
   accountant.compose(event)
   self.assertAlmostEqual(accountant._rdp[0], alpha / (2 * sigma**2))
コード例 #3
0
 def test_zero_fixed_batch_sample(self):
   accountant = rdp_privacy_accountant.RdpAccountant(
       [3.14159], privacy_accountant.NeighboringRelation.REPLACE_ONE)
   accountant.compose(
       dp_event.SampledWithoutReplacementDpEvent(
           1000, 0, dp_event.GaussianDpEvent(1.0)))
   self.assertEqual(accountant.get_epsilon(1e-10), 0)
   self.assertEqual(accountant.get_delta(1e-10), 0)
コード例 #4
0
  def test_supports(self):
    aor_accountant = rdp_privacy_accountant.RdpAccountant(
        [2.0], privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE)
    ro_accountant = rdp_privacy_accountant.RdpAccountant(
        [2.0], privacy_accountant.NeighboringRelation.REPLACE_ONE)

    event = dp_event.GaussianDpEvent(1.0)
    self.assertTrue(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.SelfComposedDpEvent(dp_event.GaussianDpEvent(1.0), 6)
    self.assertTrue(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.ComposedDpEvent(
        [dp_event.GaussianDpEvent(1.0),
         dp_event.GaussianDpEvent(2.0)])
    self.assertTrue(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.PoissonSampledDpEvent(0.1, dp_event.GaussianDpEvent(1.0))
    self.assertTrue(aor_accountant.supports(event))
    self.assertFalse(ro_accountant.supports(event))

    composed_gaussian = dp_event.ComposedDpEvent(
        [dp_event.GaussianDpEvent(1.0),
         dp_event.GaussianDpEvent(2.0)])
    event = dp_event.PoissonSampledDpEvent(0.1, composed_gaussian)
    self.assertTrue(aor_accountant.supports(event))
    self.assertFalse(ro_accountant.supports(event))

    event = dp_event.SampledWithoutReplacementDpEvent(
        1000, 10, dp_event.GaussianDpEvent(1.0))
    self.assertFalse(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.SampledWithoutReplacementDpEvent(1000, 10,
                                                      composed_gaussian)
    self.assertFalse(aor_accountant.supports(event))
    self.assertTrue(ro_accountant.supports(event))

    event = dp_event.SampledWithReplacementDpEvent(
        1000, 10, dp_event.GaussianDpEvent(1.0))
    self.assertFalse(aor_accountant.supports(event))
    self.assertFalse(ro_accountant.supports(event))
コード例 #5
0
 def test_no_tree_no_sampling(self, total_steps, noise_multiplier):
   orders = [1 + x / 10 for x in range(1, 100)] + list(range(12, 64))
   tree_rdp = _compose_trees(noise_multiplier, [1] * total_steps, orders)._rdp
   accountant = rdp_privacy_accountant.RdpAccountant(orders)
   event = dp_event.SelfComposedDpEvent(
       dp_event.GaussianDpEvent(noise_multiplier), total_steps)
   accountant.compose(event)
   base_rdp = accountant._rdp
   self.assertTrue(np.allclose(tree_rdp, base_rdp, rtol=1e-12))
コード例 #6
0
def _compose_trees(noise_multiplier, step_counts, orders):
  accountant = rdp_privacy_accountant.RdpAccountant(
      orders, privacy_accountant.NeighboringRelation.REPLACE_SPECIAL)
  accountant.compose(
      dp_event.ComposedDpEvent([
          dp_event.SingleEpochTreeAggregationDpEvent(noise_multiplier,
                                                     step_count)
          for step_count in step_counts
      ]))
  return accountant
コード例 #7
0
 def test_epsilon_delta_consistency(self):
   orders = range(2, 50)  # Large range of orders (helps test for overflows).
   for q in [0, 0.01, 0.1, 0.8, 1.]:
     for multiplier in [0.0, 0.1, 1., 10., 100.]:
       event = dp_event.PoissonSampledDpEvent(
           q, dp_event.GaussianDpEvent(multiplier))
       accountant = rdp_privacy_accountant.RdpAccountant(orders)
       accountant.compose(event)
       for delta in [.99, .9, .1, .01, 1e-3, 1e-5, 1e-9, 1e-12]:
         epsilon = accountant.get_epsilon(delta)
         delta2 = accountant.get_delta(epsilon)
         if np.isposinf(epsilon):
           self.assertEqual(delta2, 1.0)
         elif epsilon == 0:
           self.assertLessEqual(delta2, delta)
         else:
           self.assertAlmostEqual(delta, delta2)
コード例 #8
0
  def test_compute_rdp_multi_gaussian(self):
    alpha = 3.14159
    sigma1, sigma2 = 2.71828, 6.28319

    rdp1 = alpha / (2 * sigma1**2)
    rdp2 = alpha / (2 * sigma2**2)
    rdp = rdp1 + rdp2

    accountant = rdp_privacy_accountant.RdpAccountant(orders=[alpha])
    accountant.compose(
        dp_event.PoissonSampledDpEvent(
            1.0,
            dp_event.ComposedDpEvent([
                dp_event.GaussianDpEvent(sigma1),
                dp_event.GaussianDpEvent(sigma2)
            ])))
    self.assertAlmostEqual(accountant._rdp[0], rdp)
コード例 #9
0
 def test_compute_rdp_poisson_sampled_gaussian(self):
   orders = [1.5, 2.5, 5, 50, 100, np.inf]
   noise_multiplier = 2.5
   sampling_probability = 0.01
   count = 50
   event = dp_event.SelfComposedDpEvent(
       dp_event.PoissonSampledDpEvent(
           sampling_probability, dp_event.GaussianDpEvent(noise_multiplier)),
       count)
   accountant = rdp_privacy_accountant.RdpAccountant(orders=orders)
   accountant.compose(event)
   self.assertTrue(
       np.allclose(
           accountant._rdp, [
               6.5007e-04, 1.0854e-03, 2.1808e-03, 2.3846e-02, 1.6742e+02,
               np.inf
           ],
           rtol=1e-4))
コード例 #10
0
 def test_tree_wrong_neighbor_rel(self, neighboring_relation):
   event = dp_event.SingleEpochTreeAggregationDpEvent(1.0, 1)
   accountant = rdp_privacy_accountant.RdpAccountant(
       neighboring_relation=neighboring_relation)
   self.assertFalse(accountant.supports(event))
コード例 #11
0
def _get_test_rdp(event, count=1):
  accountant = rdp_privacy_accountant.RdpAccountant(orders=[2.71828])
  accountant.compose(event, count)
  return accountant._rdp[0]
コード例 #12
0
 def test_epsilon_non_private_gaussian(self):
   accountant = rdp_privacy_accountant.RdpAccountant([3.14159])
   accountant.compose(dp_event.GaussianDpEvent(0))
   self.assertEqual(accountant.get_epsilon(1e-1), np.inf)
コード例 #13
0
 def test_zero_poisson_sample(self):
   accountant = rdp_privacy_accountant.RdpAccountant([3.14159])
   accountant.compose(
       dp_event.PoissonSampledDpEvent(0, dp_event.GaussianDpEvent(1.0)))
   self.assertEqual(accountant.get_epsilon(1e-10), 0)
   self.assertEqual(accountant.get_delta(1e-10), 0)