コード例 #1
0
def broadcast_to_axes(axes: Union[AxesLike, None], *arrays: AxesParams):
    """Broadcast ``arrays`` to the length of ``axes``. Axes are inferred from the arrays if necessary."""
    if not arrays:
        raise ValueError('No arrays provided.')

    arrays = lmap(np.atleast_1d, arrays)
    lengths = lmap(len, arrays)
    if axes is None:
        axes = list(range(-max(lengths), 0))
    axes = check_axes(axes)

    if not all(len(axes) == x or x == 1 for x in lengths):
        raise ValueError(
            f'Axes and arrays are not broadcastable: {len(axes)} vs {join(lengths)}.'
        )

    arrays = [np.repeat(x, len(axes) // len(x), 0) for x in arrays]
    return (axes, *arrays)
コード例 #2
0
    def __init__(self,
                 layer: Callable,
                 downsample: Union[nn.Module, Callable],
                 upsample: Union[nn.Module, Callable],
                 merge: Callable,
                 structure: Sequence[Sequence[Union[Sequence[int],
                                                    nn.Module]]],
                 last_level: bool = True,
                 **kwargs):
        super().__init__()

        def build_level(path):
            if isinstance(path, nn.Module):
                return path

            elif not isinstance(path, Sequence) or not all(
                    isinstance(x, int) for x in path):
                raise ValueError('The passed `structure` is not valid.')

            return ConsistentSequential(layer, path, **kwargs)

        def make_up_down(o):
            if not isinstance(o, nn.Module):
                o = o()
            return o

        *levels, bridge = structure
        # handling the case [[...]]
        if len(bridge) == 1 and isinstance(bridge[0], Sequence):
            bridge = bridge[0]

        self.bridge = build_level(bridge)
        self.merge = merge
        self.last_level = last_level
        self.downsample = nn.ModuleList(
            [make_up_down(downsample) for _ in levels])
        self.upsample = nn.ModuleList([make_up_down(upsample) for _ in levels])

        # group branches
        branches = []
        for paths in zip_equal(*structure[:-1]):
            branches.append(nn.ModuleList(lmap(build_level, paths)))

        if len(branches) not in [2, 3]:
            raise ValueError(
                f'Expected 2 or 3 branches, but {len(branches)} provided.')

        self.down_path, self.up_path = branches[0], branches[-1]
        # add middle branch if needed
        if len(branches) == 2:
            self.middle_path = [identity] * len(self.down_path)
        else:
            self.middle_path = branches[1]
コード例 #3
0
def describe_dqn(memory: Memory, agent, gamma: float = 1):
    state = memory.sample_episode().state(0)
    rewards = [e.rewards() for e in memory.episodes()]

    sizes = np.array(lmap(len, rewards))
    discounted = np.array([discount_rewards(r, gamma) for r in rewards])
    summed = np.array([discount_rewards(r, 1) for r in rewards])
    q_values = get_q_values(state, agent)

    return {
        'mean reward': discounted.mean(), 'rewards': discounted[None],
        'mean reward sum': summed.mean(), 'rewards sum': summed[None],
        'mean size': sizes.mean(), 'sizes': sizes[None],
        'q_max': q_values.max(), 'q_min': q_values.min(),
    }
コード例 #4
0
 def wrapper(*arrays):
     return np.stack(
         lmap(unpack_args(predict), iterate_slices(*arrays, axis=-1)), -1)
コード例 #5
0
def uniform(shape):
    return np.array(lmap(np.random.randint, np.atleast_1d(shape)))