コード例 #1
0
def test_ellipse_plotter():
    f = plt.figure(figsize=(7, 7))
    for i, Sig in enumerate([np.array([[1.0, 0.0], [0.0, 0.25]]),
                             np.array([[0.25, 0.0], [0.0, 1.0]]),
                             np.array([[1.0, 0.8], [0.8, 1.0]]),
                             np.array([[1.0, -0.8], [-0.8, 1.0]])]):
        ax = f.add_subplot(2, 2, i+1)
        ax.set_xlim(-1, 1)
        ax.set_ylim(-1, 1)
        plot_ellipse([0., 0.], Sig)
        ax.set_title("$\Sigma$={}".format(Sig))
    f.tight_layout()
    f.savefig("plots/ellipse.png")
コード例 #2
0
def test_NormInvWish():
    mu_0 = np.r_[0.3, -0.2]
    d = len(mu_0)
    Lam_0 = np.linalg.inv(np.array([[2, 1.1], [1.1, 1.2]]))
    kappa_0 = 2.1
    nu_0 = 8

    model = dpmm.NormInvWish(mu_0, kappa_0, Lam_0, nu_0)

    # First check some numerics
    Nsample = 5000
    samples = model.sample(size=Nsample)
    mu_samples = [s[0] for s in samples]
    cov_samples = [s[1] for s in samples]

    mean = np.mean(mu_samples, axis=0)
    std = np.std(mu_samples, axis=0)/np.sqrt(Nsample)
    print "NormInvWish mu_0 = {}".format(mu_0)
    print "NormInvWish E(mu) = {} +/- {}".format(mean, std)

    mean_cov = np.mean(cov_samples, axis=0)
    std_cov = np.std(cov_samples, axis=0)/np.sqrt(Nsample)
    print "NormInvWish (Lam_0)^(-1)/(nu_0-d-1) = \n{}".format(np.linalg.inv(Lam_0)/(nu_0-d-1))
    print "NormInvWish E(Sig) = \n{}\n +/-\n{}".format(mean_cov, std_cov)

    # Now try some plots with different values of kappa_0 and nu_0
    f = plt.figure(figsize=(7, 7))
    for i, (kappa_0, nu_0) in enumerate(zip([0.4, 0.4, 6.5, 6.5],
                                            [10, 4, 10, 4])):
        model = dpmm.NormInvWish(mu_0, kappa_0, Lam_0, nu_0)
        samples = model.sample(size=25)
        ax = f.add_subplot(2, 2, i+1)
        for sample in samples:
            mu, Sig = sample
            plot_ellipse(mu, Sig, ax=ax, facecolor='none', edgecolor='k', alpha=0.2)
        plot_ellipse(mu_0, np.linalg.inv(Lam_0)/(nu_0-d-1), ax=ax, facecolor='none', edgecolor='r')
        ax.set_xlim(-3, 3)
        ax.set_ylim(-3, 3)
        ax.axvline(mu_0[0], c='r', alpha=0.1)
        ax.axhline(mu_0[1], c='r', alpha=0.1)
        ax.set_title(r"$\kappa_0$={}, $\nu_0$={}".format(kappa_0, nu_0))
        print np.mean([s[1] for s in samples], axis=0)
    f.savefig("plots/NormInvWish_samples.png")