コード例 #1
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
def test_vext(atomzs, dist):
    # check if the external potential gives the correct density profile
    # (energy is different because the energy of xc is not integral of potentials
    # times density)

    def get_dens(qc):
        dm = qc.aodm()
        rgrid = mol.get_grid().get_rgrid()
        dens = mol.get_hamiltonian().aodm2dens(dm, rgrid)
        return dens

    with xt.enable_debug():
        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                            dtype=dtype) * dist
        mol = Mol((atomzs, poss), basis="3-21G", dtype=dtype)
        xc = get_xc("lda_x")
        qc = KS(mol, xc=xc).run()

        # get the density profile
        dens = get_dens(qc)
        ldax_pot = xc.get_vxc(ValGrad(value=dens)).value
        # ldax_pot2 = -0.7385587663820223 * (4.0 / 3) * dens ** (1.0 / 3)
        # assert torch.allclose(ldax_pot, ldax_pot2)

        # calculate the energy with the external potential
        mol2 = Mol((atomzs, poss), basis="3-21G", dtype=dtype, vext=ldax_pot)
        qc2 = KS(mol2, xc=None).run()
        dens2 = get_dens(qc2)

        # make sure the densities agree
        assert torch.allclose(dens, dens2)
コード例 #2
0
def test_uks_energy_same_as_rks(xc, atomzs, dist, energy_true):
    # test to see if uks energy gets the same energy as rks for non-polarized systems
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
コード例 #3
0
def test_rks_energy(xc, atomzs, dist, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF
    # for this test only we test for different types of grids to see if any error is raised
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
    qc = KS(mol, xc=xc, restricted=True).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
コード例 #4
0
def test_rks_energy_df(xc, atomzs, dist, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF using
    # density fitting
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
    mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=True).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
コード例 #5
0
 def get_energy(atomzs):
     poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype)
     mol = Mol((atomzs, poss),
               basis="6-311++G**",
               spin=0,
               dtype=dtype,
               grid="sg3")
     qc = KS(mol, xc="lda_x", restricted=True).run()
     ene = qc.energy() - mol.get_nuclei_energy()
     return ene
コード例 #6
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
 def get_energy(vext_params):
     vext = rgrid_norm * rgrid_norm * vext_params  # (ngrid,)
     mol = Mol((atomzs, poss),
               basis="3-21G",
               dtype=dtype,
               grid=3,
               vext=vext)
     qc = KS(mol, xc=xc, restricted=True).run()
     ene = qc.energy()
     return ene
コード例 #7
0
def test_uks_energy_atoms(xc, atomz, spin, energy_true):
    # check the energy of atoms with non-0 spins
    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Mol(([atomz], poss),
              basis="6-311++G**",
              grid=4,
              dtype=dtype,
              spin=spin)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, atol=0.0, rtol=1e-6)
コード例 #8
0
def test_uks_energy_mols(xc, atomzs, dist, spin, energy_true):
    # check the energy of molecules with non-0 spins
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss),
              basis="6-311++G**",
              grid=3,
              dtype=dtype,
              spin=spin)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-6, atol=0.0)
コード例 #9
0
def test_uks_energy_mols_df(xc, atomzs, dist, spin, energy_true):
    # check the energy of molecules with non-0 spins with density fitting
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss),
              basis="6-311++G**",
              grid=3,
              dtype=dtype,
              spin=spin)
    mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true, rtol=1e-6, atol=0.0)
コード例 #10
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
 def get_energy(alphas, coeffs):
     basis = {
         'H': [
             CGTOBasis(angmom=0,
                       alphas=alphas,
                       coeffs=coeffs,
                       normalized=True)
         ]
     }
     moldesc = "H 0.0000 0.0000 0.0000; H 0.0000 0.0000 1.1163"
     mol = Mol(moldesc, basis=basis, dtype=dtype, grid=3)
     # qc = HF(mol, restricted=True).run()
     qc = KS(mol, xc="lda_x", restricted=True).run()
     return qc.energy()
コード例 #11
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
def test_rks_energy(xc, atomzs, dist, energy_true, grid, variational):
    # test to see if the energy calculated by DQC agrees with PySCF
    # for this test only we test for different types of grids to see if any error is raised
    if xc == "mgga_x_scan":
        if atomzs == [1, 1]:
            pytest.xfail("Psi4 and PySCF don't converge")
    poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                        dtype=dtype) * dist
    mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
    qc = KS(mol, xc=xc, restricted=True,
            variational=variational).run(fwd_options={"verbose": True})
    ene = qc.energy()
    # < 1 kcal/mol
    assert torch.allclose(ene, ene * 0 + energy_true, atol=1.3e-3, rtol=0)
コード例 #12
0
    def _test_ks_mols():
        # setting up xc
        a = torch.tensor(-0.7385587663820223, dtype=dtype, requires_grad=True)
        p = torch.tensor(1.3333333333333333, dtype=dtype, requires_grad=True)
        xc = PseudoLDA(a=a, p=p)

        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]], dtype=dtype) * dist
        poss = poss.requires_grad_()
        mol = Mol((atomzs, poss), basis="6-311++G**", grid=3, dtype=dtype, spin=spin)
        qc = KS(mol, xc=xc).run()
        ene = qc.energy()

        # see if grad and backward create memleak
        grads = torch.autograd.grad(ene, (poss, a, p), create_graph=True)
        ene.backward()  # no create_graph here because of known pytorch's leak
コード例 #13
0
def atest_pbc_rks_energy(xc, atomzs, spin, alattice, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF
    # for this test only we test for different types of grids to see if any error is raised
    alattice = torch.as_tensor(alattice, dtype=dtype)
    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Sol((atomzs, poss),
              basis="3-21G",
              spin=spin,
              alattice=alattice,
              dtype=dtype,
              grid=grid)
    mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
コード例 #14
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
def test_uks_energy_atoms(xc, atomz, spin, energy_true):
    # check the energy of atoms with non-0 spins
    if xc == "mgga_x_scan":
        if atomz == 3:
            pytest.xfail("No benchmark converges")

    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Mol(([atomz], poss),
              basis="6-311++G**",
              grid="sg3",
              dtype=dtype,
              spin=spin)
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    # < 1 kcal/mol
    assert torch.allclose(ene, ene * 0 + energy_true, atol=1e-3, rtol=0)
コード例 #15
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
def test_pbc_rks_energy(xc, atomzs, spin, alattice, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF
    # for this test only we test for different types of grids to see if any error is raised
    alattice = torch.as_tensor(alattice, dtype=dtype)
    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Sol((atomzs, poss),
              basis="3-21G",
              spin=spin,
              alattice=alattice,
              dtype=dtype,
              grid=grid)
    mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    energy_true = ene * 0 + energy_true

    # rtol is a bit too high. Investigation indicates that this might be due to
    # the difference in grid (i.e. changing from sg2 to sg3 changes the values),
    # not from the eta of the compensating charge (i.e. changing it does not
    # change the value)
    # TODO: make a better grid
    assert torch.allclose(ene, energy_true, rtol=1e-3)
コード例 #16
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
def test_rks_energy_df(xc, atomzs, dist, energy_true, grid):
    # test to see if the energy calculated by DQC agrees with PySCF using
    # density fitting
    if xc == "mgga_x_scan":
        if atomzs == [1, 1]:
            pytest.xfail("Psi4 and PySCF don't converge")

    for lowmem in [False, True]:  # simulating low memory condition
        if lowmem:
            init_value = config.THRESHOLD_MEMORY
            config.THRESHOLD_MEMORY = 1000000  # 1 MB

        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                            dtype=dtype) * dist
        mol = Mol((atomzs, poss), basis="6-311++G**", dtype=dtype, grid=grid)
        mol.densityfit(method="coulomb", auxbasis="def2-sv(p)-jkfit")
        qc = KS(mol, xc=xc, restricted=True).run()
        ene = qc.energy()
        # error to be < 1 kcal/mol
        assert torch.allclose(ene, ene * 0 + energy_true, atol=1.1e-3, rtol=0)

        if lowmem:
            # restore the value
            config.THRESHOLD_MEMORY = init_value
コード例 #17
0
def dqcelrepxc(atom: str, spin: int = 0, xc: str = "lda_x", basis: str = BASIS):
    # returns the electron repulsion and xc operator using DQC
    mol = Mol(atom, spin=spin, basis=basis, dtype=DTYPE, grid=4)
    qc = KS(mol, xc=xc)
    hamilt = mol.get_hamiltonian()
    if spin == 0:
        # set dm to be an identity matrix
        dm = torch.eye(hamilt.nao, dtype=DTYPE)
        velrepxc = hamilt.get_vxc(dm) + hamilt.get_elrep(dm)
        return velrepxc.fullmatrix()
    else:
        dmu = torch.eye(hamilt.nao, dtype=DTYPE)
        dm = SpinParam(u=dmu, d=dmu)
        vxc = hamilt.get_vxc(dm)
        elrep = hamilt.get_elrep(dm.u + dm.d)
        return torch.cat(((vxc.u + elrep).fullmatrix().unsqueeze(0),
                          (vxc.d + elrep).fullmatrix().unsqueeze(0)), dim=0)
コード例 #18
0
ファイル: test_ks.py プロジェクト: diffqc/dqc
def test_no_xc(atomzs, dist, restricted):
    # check if xc == None produces the same result as "0*lda"
    with xt.enable_debug():
        poss = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                            dtype=dtype) * dist

        mol1 = Mol((atomzs, poss), basis="3-21G", dtype=dtype)
        qc1 = KS(mol1, xc="0*lda_x", restricted=restricted).run()
        ene1 = qc1.energy()

        mol2 = Mol((atomzs, poss), basis="3-21G", dtype=dtype)
        qc2 = KS(mol2, xc=None, restricted=restricted).run()
        ene2 = qc2.energy()

        assert torch.allclose(ene1, ene2)
コード例 #19
0
 def get_energy(vext_params):
     vext = rgrid_norm * rgrid_norm * vext_params  # (ngrid,)
     qc = KS(mol, xc=xc, vext=vext, restricted=True).run()
     ene = qc.energy()
     return ene
コード例 #20
0
ファイル: time_forward.py プロジェクト: diffqc/dqc
def run_ks_forward(moldesc, basis="6-311++G**", xc="lda_x", grid="sg3"):
    # run a simple KS energy calculation
    mol = Mol(moldesc, basis=basis, grid=grid)
    qc = KS(mol, xc=xc).run()
    ene = qc.energy()
    return ene
コード例 #21
0
    mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)


if __name__ == "__main__":
    import time
    xc = "lda_x"
    basis = "3-21G"
    atomzs = [3]
    spin = 1
    alattice = np.array([[1., 1., -1.], [-1., 1., 1.], [1., -1., 1.]
                         ]) * 0.5 * 6.6329387300636
    grid = "sg2"

    # test to see if the energy calculated by DQC agrees with PySCF
    # for this test only we test for different types of grids to see if any error is raised
    alattice = torch.as_tensor(alattice, dtype=dtype)
    poss = torch.tensor([[0.0, 0.0, 0.0]], dtype=dtype)
    mol = Sol((atomzs, poss),
              basis="3-21G",
              spin=spin,
              alattice=alattice,
              dtype=dtype,
              grid=grid)
    mol.densityfit(method="gdf", auxbasis="def2-sv(p)-jkfit")
    qc = KS(mol, xc=xc, restricted=False).run()
    ene = qc.energy()
    assert torch.allclose(ene, ene * 0 + energy_true)
コード例 #22
0
 def get_energy(dist_tensor):
     poss_tensor = torch.tensor([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]],
                                dtype=dtype) * dist_tensor
     mol = Mol((atomzs, poss_tensor), basis="3-21G", dtype=dtype, grid=3)
     qc = KS(mol, xc=xc, restricted=True).run(bck_options=bck_options)
     return qc.energy()
コード例 #23
0
 def get_energy(efield):
     mol = Mol(moldesc, basis="3-21G", dtype=dtype, efield=efield)
     qc = KS(mol, xc="lda_x").run()
     ene = qc.energy()
     return ene
コード例 #24
0
 def get_energy(*params):
     xc = xccls(*params)
     qc = KS(mol, xc=xc, restricted=False).run()
     ene = qc.energy()
     return ene