コード例 #1
0
ファイル: vec_mult.py プロジェクト: Junotja/Dragon
    def grad(self, inputs, outputs):
        """
        Grad implement(i.e. backward-pass).

            Parameters
            ----------
            inputs  : sequence of strs
                Indicating the operator's inputs + in-grads.
                    The first N strs in sequence is inputs.
                    The N + 1 ... 2N strs in sequence is in-grads.

            outputs : sequence of strs
                Indicating the operator's out-grads

            Returns
            -------
            None

        """
        x1 = ws.FetchTensor(inputs[0])
        x2 = ws.FetchTensor(inputs[1])
        dy = ws.FetchTensor(inputs[-1])
        dx1 = dy * x2
        dx2 = dy * x1
        ws.FeedTensor(outputs[0], dx1)
        ws.FeedTensor(outputs[1], dx2)
コード例 #2
0
    def forward(self, bottom, top):
        # fetch matches between default boxes and gt boxes
        all_match_inds = ws.FetchTensor(bottom[0])

        # fetch the labels (after hard mining possibly)
        all_match_labels = ws.FetchTensor(bottom[1])

        # fetch the default boxes(anchors)
        prior_boxes = ws.FetchTensor(bottom[2])

        # fetch the annotations
        annotations = ws.FetchTensor(bottom[3])

        # decode gt boxes from annotations
        all_gt_boxes = self._fetch_gt_boxes(annotations)

        num_images = len(all_gt_boxes)
        num_priors = len(prior_boxes)

        all_bbox_targets = np.zeros((num_images, num_priors, 12),
                                    dtype=np.float32)
        all_bbox_inside_weights = np.zeros(all_bbox_targets.shape,
                                           dtype=np.float32)
        all_bbox_outside_weights = np.zeros(all_bbox_targets.shape,
                                            dtype=np.float32)

        # number of matched boxes(#positive)
        # we divide it by ``IMS_PER_BATCH`` as SmoothLLLoss will divide it also
        bbox_normalization = len(
            np.where(all_match_labels > 0)[0]) / cfg.TRAIN.IMS_PER_BATCH

        for im_idx in xrange(num_images):
            match_inds = all_match_inds[im_idx]
            match_labels = all_match_labels[im_idx]
            gt_boxes = np.array(all_gt_boxes[im_idx], dtype=np.float32)

            # sample fg-rois(default boxes) & gt-rois(gt boxes)
            ex_inds = np.where(match_labels > 0)[0]
            ex_rois = prior_boxes[ex_inds]
            gt_assignment = match_inds[ex_inds].astype(np.int32, copy=False)
            gt_rois = gt_boxes[gt_assignment]

            # compute fg targets
            targets = self._compute_targets(ex_rois, gt_rois)

            # assign targets & inside weights & outside weights
            all_bbox_targets[im_idx][ex_inds] = targets[:, 1:]
            all_bbox_inside_weights[im_idx, :] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS
            all_bbox_outside_weights[im_idx][
                ex_inds] = 1.0 / bbox_normalization

        # feed bbox targets to compute bbox regression loss
        ws.FeedTensor(top[0], all_bbox_targets)

        # feed inside weights for SmoothL1Loss
        ws.FeedTensor(top[1], all_bbox_inside_weights)

        # feed outside weights for SmoothL1Loss
        ws.FeedTensor(top[2], all_bbox_outside_weights)
コード例 #3
0
    def forward(self, bottom, top):
        # assign output
        ws.FeedTensor(top[0], self.data)
        ws.FeedTensor(top[1], self.label)

        # pick next input
        if self.random:
            self.idx = random.randint(0, len(self.indices)-1)
        else:
            self.idx += 1
            if self.idx == len(self.indices):
                self.idx = 0
コード例 #4
0
def shared(value, name=None, borrow=False):
    if name is None: name = GetTensorName()
    if not isinstance(value, np.ndarray):
        raise TypeError('shared variables be a numpy array')
    tensor = Tensor(name).Variable()
    ws.FeedTensor(tensor, value)
    return tensor
コード例 #5
0
ファイル: common.py プロジェクト: zhangkaij/Dragon
def At(inputs, indices=[], axis=0, acc_gradient=False, **kwargs):

    args = locals()
    kwargs = args['kwargs']
    del args['kwargs']
    kwargs = dict(args, **kwargs)

    if isinstance(inputs, list):
        if len(inputs) != 2:
            raise TypeError('At Operator accpets a list of 2 Tensors')
    elif isinstance(inputs, Tensor):
        if not isinstance(indices, list):
            raise TypeError('At Operator accepts a list of indices')
        indices = np.array(indices, dtype=np.float32)
        tensor = GetTensorName()
        ws.FeedTensor(tensor, indices)
        kwargs['inputs'] = [kwargs['inputs'], Tensor(tensor)]

    output = Tensor.CreateOperator(op_type='At', nout=1, **kwargs)

    if isinstance(inputs, Tensor):
        if inputs.shape is not None:
            output.shape = inputs.shape[:]
            output.shape[axis] = len(indices)

    return output
コード例 #6
0
ファイル: tensor.py プロジェクト: Spark001/Dragon-1
    def __rdiv__(self, other):
        """Calculate y / x.

        Parameters
        ----------
        other : Tensor
            The y.

        Returns
        -------
        Tensor
            The output tensor.

        """
        if not isinstance(other, Tensor):
            if not isinstance(other, np.ndarray):
                if not isinstance(other, list): other = [other]
            other = np.array(other, dtype=np.float32)
            tensor = Tensor(GetTensorName())
            ws.FeedTensor(tensor, other)
            other = tensor
        output = self.CreateOperator(inputs=[other, self],
                                     nout=1,
                                     op_type='RDiv')
        if self.shape is not None:
            output.shape = self.shape[:]
        return output
コード例 #7
0
def GraphDef_Update(graph_def, updater):
    """ generate all update targets for CC Graph """
    if updater is None: return

    updater._prefix = graph_def.name + '_'
    extra_kwargs = updater._extra_kwargs
    extra_kwargs['domain'] = updater._prefix

    # wrap hyper-parameters as Tensor for CC
    for k, v in updater._hyper_params.items():
        ws.FeedTensor(updater._prefix + k, np.array([v], dtype=np.float32))

    # check data parallel if necessary
    if mpi.is_init():
        idx, group = mpi.allow_parallel()
        if idx != -1:
            extra_kwargs['comm'], extra_kwargs['group'] \
                = mpi.group(root=group[0], incl=group)
            extra_kwargs['root'] = group[0]
            extra_kwargs['mode'] = mpi.get_parallel_mode()
            extra_kwargs['group_size'] = len(group)

    for tuple in updater._tuples:
        tensors = tuple[0]
        kwargs = tuple[1]
        kwargs = dict(kwargs, **extra_kwargs)
        u_target = pb.UpdateTarget()
        u_target.type = updater._type
        _, u_target.name = GetOperatorName()
        for tensor in tensors:
            u_target.tensor.append(tensor)
        for k, v in kwargs.items():
            u_target.arg.add().CopyFrom(MakeArgument(k, v))
        graph_def.u_target.extend([u_target])
コード例 #8
0
    def forward(self, **kwargs):
        """Forward pass. [**PyCaffe Style**]

        Parameters
        ----------
        inputs : dict or None
            The blobs to feed before.

        Returns
        -------
        Tensor or list of Tensor
            The outputs of the net.

        References
        ----------
        The implementation of `Net_forward(pycaffe.py, L88)`_.

        """
        def GetOutputs(net, net_outputs):
            ret = {}
            for output in net_outputs:
                ret[output] = ws.FetchTensor(net.blobs[output].data)
            return ret

        if kwargs:
            for name, blob in kwargs.items():
                ws.FeedTensor(self._inputs_to_tensors[name], blob)

        self.function()(return_outputs=False, stage='forward')
        return lambda net = self, net_outputs = self.outputs \
            : GetOutputs(net, net_outputs)
コード例 #9
0
def seg(file, save_dir="data/seg_results", mix=True, show=True):
    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

    im = load_image(file)
    # shape for input (data blob is N x C x H x W), set data
    im = im.reshape(1, *im.shape)
    ws.FeedTensor(net.blobs['data'].data, im)

    # run net and take argmax for prediction
    net.forward()

    if save_dir is not None:
        filename_ext = file.split('/')[-1]
        filename = filename_ext.split('.')[-2]
        filepath = os.path.join(save_dir, filename + '.png')

        mat = ws.FetchTensor(net.blobs['score'].data)
        im = Image.fromarray(mat[0].argmax(0).astype(np.uint8), mode='P')
        im.putpalette(color_table)
        im.save(filepath)

        if show:
            if mix:
                show1 = cv2.imread(file)
                show2 = cv2.imread(filepath)
                show3 = cv2.addWeighted(show1, 0.7, show2, 0.5, 1)
            else:
                show3 = cv2.imread(filepath)
            cv2.imshow('Seg-FCN', show3)
            cv2.waitKey(0)
コード例 #10
0
 def feed_parameters(self, group):
     template = group['slot'] + '/{}'
     for k, v in group.items():
         if k in self._mutable_parameters:
             _workspace.FeedTensor(template.format(
                 self._mutable_parameters[k]),
                                   v,
                                   dtype='float32',
                                   force_cpu=True)
コード例 #11
0
def WrapScalar(scalar, dtype, device):
    # We use (DType + Value) to hash different scalars
    # Setting a Tensor with same DType and shape will not deconstruct it
    if 'float' in dtype: scalar = float(scalar)
    if 'int' in dtype: scalar = int(scalar)
    name = '/share/scalar/{}/{}'.format(dtype, str(scalar))
    if not _workspace.HasTensor(name):
        _workspace.FeedTensor(name, numpy.array(scalar, dtype=dtype))
    t = _Tensor(name=name, dtype=dtype, device=device, own_storage=False)
    t.requires_grad = False
    return t
コード例 #12
0
 def __setattr__(self, key, value):
     defaults = self.__dict__.get('_defaults')
     if defaults is not None and key in defaults:
         if self._registered:
             # convert all defaults as float32 for convenience
             ws.FeedTensor(self._slot + '/' + key,
                           np.array([value], dtype=np.float32))
         else:
             self._defaults[key] = value
     else:
         object.__setattr__(self, key, value)
コード例 #13
0
ファイル: updaters.py プロジェクト: XJTUeducation/Dragon
 def __setattr__(self, key, value):
     defaults = self.__dict__.get('_defaults')
     if defaults is not None and key in defaults:
         if self._registered:
             ws.FeedTensor(self._slot + '/' + key,
                           value,
                           dtype='float32',
                           force_cpu=True)
         else:
             self._defaults[key] = value
     else:
         object.__setattr__(self, key, value)
コード例 #14
0
 def __div__(self, other):
     if not isinstance(other, Tensor):
         if not isinstance(other, np.ndarray):
             if not isinstance(other, list): other = [other]
         other = np.array(other, dtype=np.float32)
         tensor = Tensor(GetTensorName())
         ws.FeedTensor(tensor, other)
         other = tensor
     output = self.CreateOperator(inputs=[self, other], nout=1, op_type='Div')
     if self.shape is not None:
         output.shape = self.shape[:]
     return output
コード例 #15
0
    def grad(self, inputs, outputs):
        """Gradient method, i.e., backward pass.

        Parameters
        ----------
        inputs : list of str
            Indicating the name of input tensors.
        outputs : list of str
            Indicating the name of output tensors.

        Returns
        -------
        None

        """
        x1 = ws.FetchTensor(inputs[0])
        x2 = ws.FetchTensor(inputs[1])
        dy = ws.FetchTensor(inputs[-1])
        dx1 = dy * x2
        dx2 = dy * x1
        ws.FeedTensor(outputs[0], dx1)
        ws.FeedTensor(outputs[1], dx2)
コード例 #16
0
ファイル: function.py プロジェクト: zfxu/Dragon
def GraphDef_Update(meta_graph, updater):
    """Inject the update targets into GraphDef.

    The ``updater`` should generate update targets before.

    Parameters
    ----------
    meta_graph : dragon_pb2.GraphDef
        The definition of meta graph.
    updater : BaseUpdater
        The updater.

    Returns
    -------
    None

    """
    if updater is None: return

    updater._prefix = meta_graph.name + '_'
    extra_arguments = updater._extra_kwargs
    extra_arguments['domain'] = updater._prefix
    parallel_arguments = {}

    # wrap hyper-parameters as Tensor for CC
    for k, v in updater._hyper_params.items():
        ws.FeedTensor(updater._prefix + k, np.array([v], dtype=np.float32))

    # check data parallel if necessary
    if mpi.Is_Init():
        idx, group = mpi.AllowParallel()
        if idx != -1:
            parallel_arguments['parallel_mode'] = mpi.GetParallelMode()
            parallel_arguments['comm'], parallel_arguments['group'] \
                = mpi.CreateGroup(root=group[0], incl=group)
            parallel_arguments['root'] = group[0]
        for k, v in parallel_arguments.items():
            meta_graph.arg.add().CopyFrom(MakeArgument(k, v))

    for tuple in updater._tuples:
        tensors = tuple[0]
        arguments = tuple[1]
        kwargs = dict(arguments, **extra_arguments)
        u_target = pb.UpdateTarget()
        u_target.type = updater._type
        _, u_target.name = GetOperatorName()
        for tensor in tensors:
            u_target.tensor.append(tensor)
        for k, v in kwargs.items():
            u_target.arg.add().CopyFrom(MakeArgument(k, v))
        meta_graph.u_target.extend([u_target])
コード例 #17
0
ファイル: net.py プロジェクト: zhangkaij/Dragon
    def forward(self, **kwargs):
        """ simply follow the pycaffe style """
        def GetOutputs(net, net_outputs):
            ret = {}
            for output in net_outputs:
                ret[output] = ws.FetchTensor(net.blobs[output].data)
            return ret
        if kwargs:
            for name, blob in kwargs.items():
                ws.FeedTensor(self._inputs_to_tensors[name], blob)

        self.function(return_outputs=False, stage='forward')
        return lambda net = self, net_outputs = self.outputs \
            : GetOutputs(net, net_outputs)
コード例 #18
0
def constant(value, dtype=None, shape=None, name=None):
    if dtype == None: dtype = dtypes.float32
    if isinstance(value, np.ndarray): feed = value.astype(dtype)
    elif isinstance(value, list): feed = np.array(value, dtype)
    else: feed = np.array([value], dtype)
    if shape is not None:
      if feed.size == 1:
        c = feed[0]
        feed = np.zeros(shape, dtype)
        feed.fill(c)
      else: feed = feed.reshape(shape)
    tensor = Tensor(name)
    tensor.shape = list(feed.shape)
    ws.FeedTensor(tensor, feed)
    return tensor
コード例 #19
0
def interp(net, layers):
    print 'bilinear-interp for layers:', layers
    net.forward()  # dragon must forward once to create weights
    for l in layers:
        net_param = ws.FetchTensor(net.params[l][0].data)
        m, k, h, w = net_param.shape
        if m != k and k != 1:
            print 'input + output channels need to be the same or |output| == 1'
            raise
        if h != w:
            print 'filters need to be square'
            raise
        filt = upsample_filt(h)
        net_param[range(m), range(k), :, :] = filt
        ws.FeedTensor(net.params[l][0].data._name, net_param)
コード例 #20
0
    def forward_v2(self, **kwargs):
        """Forward pass while silencing all net outputs.

        Parameters
        ----------
        inputs : dict, optional
            The blobs to feed before.

        Returns
        -------
        None

        """
        for name, blob in kwargs.items():
            _workspace.FeedTensor(self._inputs_to_tensors[name], blob)
        self.function()(return_outputs=False, stage='forward')
コード例 #21
0
ファイル: data_process.py プロジェクト: hyglvy/cstd
    def run(self, inputs, outputs):
        """Run method, i.e., forward pass.

        Parameters
        ----------
        inputs : list of str
            Indicating the name of input tensors.
        outputs : list of str
            Indicating the name of output tensors.

        Returns
        -------
        None

        """
        ws.FeedTensor(outputs[0], self._queue.get())
コード例 #22
0
    def forward(self, bottom, top):
        # fetch the labels from the primary matches.
        all_match_labels = ws.FetchTensor(bottom[0])

        # fetch the max overlaps between default boxes and gt boxes
        all_max_overlaps = ws.FetchTensor(bottom[1])

        # fetch the confidences computed by SoftmaxLayer
        all_conf_prob = ws.FetchTensor(bottom[2])

        # label ``-1`` will be ignored
        all_labels = np.empty(all_match_labels.shape, dtype=np.float32)
        all_labels.fill(-1)

        for im_idx in xrange(all_match_labels.shape[0]):
            matche_labels = all_match_labels[im_idx]
            max_overlaps = all_max_overlaps[im_idx]

            # compute conf loss
            conf_prob = all_conf_prob[im_idx]
            conf_loss = np.zeros(matche_labels.shape, dtype=np.float32)
            inds = np.where(matche_labels >= 0)[0]
            flt_min = np.finfo(float).eps
            conf_loss[inds] = -1.0 * np.log(
                np.maximum(
                    conf_prob[inds, matche_labels[inds].astype(np.int32)],
                    flt_min))

            # filter negatives
            fg_inds = np.where(matche_labels > 0)[0]
            neg_inds = np.where(matche_labels == 0)[0]
            neg_overlaps = max_overlaps[neg_inds]
            eligible_neg_inds = np.where(neg_overlaps < self._neg_overlap)[0]
            sel_inds = neg_inds[eligible_neg_inds]

            # do mining
            sel_loss = conf_loss[sel_inds]
            num_pos = len(fg_inds)
            num_sel = min(int(num_pos * self._neg_pos_ratio), len(sel_inds))
            sorted_sel_inds = sel_inds[np.argsort(-sel_loss)]
            bg_inds = sorted_sel_inds[:num_sel]
            all_labels[im_idx][fg_inds] = matche_labels[
                fg_inds]  # keep fg indices
            all_labels[im_idx][bg_inds] = 0  # use hard negatives as bg indices

        # feed labels to compute cls loss
        ws.FeedTensor(top[0], all_labels)
コード例 #23
0
    def run(self, inputs, outputs):
        """
        Run implement(i.e. forward-pass).

            Parameters
            ----------
            inputs  : sequence of strs
                Indicating the operator's inputs
            outputs : sequence of strs
                Indicating the operator's outputs

            Returns
            -------
            None

        """
        ws.FeedTensor(outputs[0], self._queue.get())
コード例 #24
0
 def register_in_workspace(self):
     if not self._registered:
         for k, v in self._defaults.items():
             workspace.FeedTensor(self._slot + "/" + k,
                                  v,
                                  dtype='float32',
                                  force_cpu=True)
         self._registered = True
         if self._verbose:
             print(
                 '---------------------------------------------------------'
             )
             print('Optimizer: {}, Using config:'.format(self.type(True)))
             pprint.pprint(self._defaults)
             print(
                 '---------------------------------------------------------'
             )
コード例 #25
0
    def run(self, inputs, outputs):
        """Run method, i.e., forward pass.

        Parameters
        ----------
        inputs : list of str
            Indicating the name of input tensors.
        outputs : list of str
            Indicating the name of output tensors.

        Returns
        -------
        None

        """
        x1 = ws.FetchTensor(inputs[0])
        x2 = ws.FetchTensor(inputs[1])
        ws.FeedTensor(outputs[0], x1 * x2)  # call numpy mult
コード例 #26
0
    def run(self, inputs, outputs):
        """Run method, i.e., forward pass.

        Parameters
        ----------
        inputs : sequence of str
            The name of inputs.
        outputs : sequence of str
            The name of outputs.

        Returns
        -------
        None

        """
        blobs = self._data_batch.get()
        for idx, blob in enumerate(blobs):
            _workspace.FeedTensor(outputs[idx], blob)
コード例 #27
0
    def run(self, inputs, outputs):
        """Run method, i.e., forward pass.

        Parameters
        ----------
        inputs : list of str
            Indicating the name of input tensors.
        outputs : list of str
            Indicating the name of output tensors.

        Returns
        -------
        None

        """
        blobs = self._data_batch.get()
        for idx, blob in enumerate(blobs):
            ws.FeedTensor(outputs[idx], blob)
コード例 #28
0
ファイル: tensor.py プロジェクト: Spark001/Dragon-1
    def set_value(self, new_value, **kwargs):
        """Feed the values to C++ backend. [**Theano Style**]

        Parameters
        ----------
        new_value : basic type, list or numpy.ndarray
            The values to set.

        Returns
        -------
        None

        See Also
        --------
        `workspace.FeedTensor(*args, **kwargs)`_ - How to feed a Tensor.

        """
        ws.FeedTensor(self, new_value)
コード例 #29
0
 def register_in_workspace(self):
     if not self._registered:
         for k, v in self._defaults.items():
             # convert all defaults as float32 for convenience
             ws.FeedTensor(self._slot + "/" + k,
                           np.array([v], dtype=np.float32))
         self._registered = True
         if self._verbose:
             from dragon.config import logger
             logger.info(
                 '---------------------------------------------------------'
             )
             logger.info('Optimizer: {}, Using config:'.format(
                 self.type(True)))
             pprint.pprint(self._defaults)
             logger.info(
                 '---------------------------------------------------------'
             )
コード例 #30
0
ファイル: updaters.py プロジェクト: XJTUeducation/Dragon
 def register_in_workspace(self):
     if not self._registered:
         for k, v in self._defaults.items():
             ws.FeedTensor(self._slot + "/" + k,
                           v,
                           dtype='float32',
                           force_cpu=True)
         self._registered = True
         if self._verbose:
             from dragon.config import logger
             logger.info(
                 '---------------------------------------------------------'
             )
             logger.info('Optimizer: {}, Using config:'.format(
                 self.type(True)))
             pprint.pprint(self._defaults)
             logger.info(
                 '---------------------------------------------------------'
             )