コード例 #1
0
ファイル: in_code_demo.py プロジェクト: zombig/dragonfly-1
def main():
    """ Main Function. """
    # Choose which objective to minimise and the configuration file
    objective_to_min, config_file, fidel_cost_func = _CHOOSER_DICT[(PROBLEM,
                                                                    IS_MF)]
    config = load_config_file(config_file)
    log_stream = open(LOG_FILE, 'w')
    # Call the optimiser
    if IS_MF:
        opt_val, opt_pt, history = minimise_multifidelity_function(
            objective_to_min,
            config.fidel_space,
            config.domain,
            config.fidel_to_opt,
            fidel_cost_func,
            MAX_CAPITAL,
            capital_type='realtime',
            config=config,
            reporter=log_stream)
    else:
        opt_val, opt_pt, history = minimise_function(objective_to_min,
                                                     config.domain,
                                                     MAX_CAPITAL,
                                                     capital_type='realtime',
                                                     config=config,
                                                     reporter=log_stream)
    # Print out result
    log_stream.close()
    print('Optimum Value found in %02.f time (%d evals): %0.4f' %
          (MAX_CAPITAL, len(history.curr_opt_points), opt_val))
    print('Optimum Point: %s.' % (str(opt_pt)))
コード例 #2
0
def _preprocess_arguments(domain, funcs, config):
    """ Preprocess domain arguments and configuration file. """
    # Preprocess config argument
    converted_cp_to_euclidean = False
    if isinstance(config, str):
        config = load_config_file(config)
    if domain is None:
        domain = config.domain
    # The function
    if config is not None:
        proc_funcs = [
            get_processed_func_from_raw_func_for_cp_domain(
                f, config.domain, config.domain_orderings.index_ordering,
                config.domain_orderings.dim_ordering) for f in funcs
        ]
    else:
        proc_funcs = funcs
    ret_funcs = proc_funcs
    # Preprocess domain argument
    if isinstance(domain, (list, tuple)):
        domain = EuclideanDomain(domain)
    elif domain.get_type() == 'euclidean':
        pass
    elif domain.get_type() == 'cartesian_product':
        if domain.num_domains == 1 and domain.list_of_domains[0].get_type(
        ) == 'euclidean':
            domain = domain.list_of_domains[0]
            config.domain_orderings.dim_ordering = config.domain_orderings.dim_ordering[
                0]
            config.domain_orderings.index_ordering = config.domain_orderings.index_ordering[
                0]
            config.domain_orderings.kernel_ordering = config.domain_orderings.kernel_ordering[
                0]
            config.domain_orderings.name_ordering = config.domain_orderings.name_ordering[
                0]
            config.domain = domain
            converted_cp_to_euclidean = True

            # The function
            def _get_ret_func_from_proc_func_for_euc_domains(_proc_func):
                """ Get function to return. """
                return lambda x: _proc_func([x])

            ret_funcs = [
                _get_ret_func_from_proc_func_for_euc_domains(pf)
                for pf in proc_funcs
            ]
    else:
        raise ValueError(
            'domain should be an instance of EuclideanDomain or ' +
            'CartesianProductDomain.')
    return domain, ret_funcs, config, converted_cp_to_euclidean
コード例 #3
0
def _get_cpfc_args_from_config(config):
    """ Return arguments as a dict. """
    # pylint: disable=maybe-no-member
    if isinstance(config, str):
        from dragonfly.exd.cp_domain_utils import load_config_file
        config = load_config_file(config)
    ret = {
        'domain': config.domain,
        'domain_orderings': config.domain_orderings,
        'fidel_space': config.fidel_space,
        'fidel_to_opt': config.fidel_to_opt,
        'fidel_space_orderings': config.fidel_space_orderings
    }
    return ret
コード例 #4
0
def main():
    """ Main Function"""
    # Choose configuration file
    wp = os.getcwd()
    config_file = wp+'\\examples\\dm\\diabetes'+'\\config_skrfr_mf.json'
    config = load_config_file(config_file)
    log_stream = open(LOG_FILE,'w')
    # Call the optimiser
    opt_val, opt_pt, history = minimise_multifidelity_function(rfr_mf_obj, 
    config.fidel_space, config.domain, config.fidel_to_opt, rfr_mf_cost,
    MAX_CAPITAL,capital_type='realtime', config=config, reporter=log_stream)
    log_stream.close()
    print('Optimum Value found in %02.f time (%d evals): %0.4f'%(
        MAX_CAPITAL, len(history.curr_opt_points), opt_val))
    print('Optimum Point: %s.'%(str(opt_pt)))
コード例 #5
0
                total += labels.size(0)
                correct += (predicted == labels.cuda()).sum().item()

        accuracy = 100 * correct / total
        return accuracy

def parallel_exec(draw):
    train_instance = Trainable_cifar10()
    train_instance.reset(*draw)
    return train_instance.train_and_eval()



if __name__ == "__main__":
    DEBUG = True
    config = load_config_file('cifar10-dom.json')
    domain, domain_orderings = config.domain, config.domain_orderings
    func_caller = CPFunctionCaller(None, domain, domain_orderings=domain_orderings)
    opt = gp_bandit.CPGPBandit(func_caller, ask_tell_mode=True)
    opt.initialise()

    parallel_jobs = 10
    train_instance = Trainable_cifar10()

    while True:
        results = {}
        if parallel_jobs > 0:
            draws = [opt.ask() for _ in range(parallel_jobs)]
            with Pool(parallel_jobs) as p:
                accuracies = p.map(parallel_exec, draws)
            # accuracies = [parallel_exec(d) for d in draws]
コード例 #6
0
def _preprocess_multifidelity_arguments(fidel_space, domain, funcs,
                                        fidel_cost_func, fidel_to_opt, config):
    """ Preprocess fidel_space, domain arguments and configuration file. """
    # Preprocess config argument
    converted_cp_to_euclidean = False
    if isinstance(config, str):
        config = load_config_file(config)
    if fidel_space is None:
        fidel_space = config.fidel_space
    if domain is None:
        domain = config.domain
    if fidel_to_opt is None:
        fidel_to_opt = config.fidel_to_opt
    # The function
    if config is not None:
        proc_funcs = [
            get_processed_func_from_raw_func_for_cp_domain_fidelity(f, config)
            for f in funcs
        ]
        proc_fidel_cost_func = get_processed_func_from_raw_func_for_cp_domain(
            fidel_cost_func, config.fidel_space,
            config.fidel_space_orderings.index_ordering,
            config.fidel_space_orderings.dim_ordering)
    else:
        proc_funcs = funcs
        proc_fidel_cost_func = fidel_cost_func
    ret_funcs = proc_funcs
    ret_fidel_cost_func = proc_fidel_cost_func
    # Preprocess domain argument
    if isinstance(fidel_space,
                  (list, tuple)) and isinstance(domain, (list, tuple)):
        domain = EuclideanDomain(domain)
        fidel_space = EuclideanDomain(fidel_space)
    elif fidel_space.get_type() == 'euclidean' and domain.get_type(
    ) == 'euclidean':
        pass
    elif fidel_space.get_type() == 'cartesian_product' and \
         domain.get_type() == 'cartesian_product':
        if fidel_space.num_domains == 1 and \
             fidel_space.list_of_domains[0].get_type() == 'euclidean' and \
           domain.num_domains == 1 and domain.list_of_domains[0].get_type() == 'euclidean':
            # Change the fidelity space
            fidel_space = fidel_space.list_of_domains[0]
            config.fidel_space_orderings.dim_ordering = \
              config.fidel_space_orderings.dim_ordering[0]
            config.fidel_space_orderings.index_ordering = \
              config.fidel_space_orderings.index_ordering[0]
            config.fidel_space_orderings.kernel_ordering = \
              config.fidel_space_orderings.kernel_ordering[0]
            config.fidel_space_orderings.name_ordering = \
              config.fidel_space_orderings.name_ordering[0]
            config.fidel_to_opt = config.fidel_to_opt[0]
            fidel_to_opt = fidel_to_opt[0]
            # Change the domain
            domain = domain.list_of_domains[0]
            config.domain_orderings.dim_ordering = config.domain_orderings.dim_ordering[
                0]
            config.domain_orderings.index_ordering = config.domain_orderings.index_ordering[
                0]
            config.domain_orderings.kernel_ordering = config.domain_orderings.kernel_ordering[
                0]
            config.domain_orderings.name_ordering = config.domain_orderings.name_ordering[
                0]
            # Add to config
            config.fidel_space = fidel_space
            config.domain = domain
            converted_cp_to_euclidean = True

            # Functions
            def _get_ret_func_from_proc_func_for_euc_domains(_proc_func):
                """ Get function to return. """
                return lambda z, x: _proc_func([z], [x])

            ret_funcs = [
                _get_ret_func_from_proc_func_for_euc_domains(pf)
                for pf in proc_funcs
            ]
            ret_fidel_cost_func = lambda z: proc_fidel_cost_func([z])
    else:
        raise ValueError(
            'fidel_space and domain should be either both instances of ' +
            'EuclideanDomain or both CartesianProductDomain.')
    return (fidel_space, domain, ret_funcs, ret_fidel_cost_func, fidel_to_opt,
            config, converted_cp_to_euclidean)
コード例 #7
0
def get_prob_params():
  """ Returns the problem parameters. """
  prob = Namespace()
  prob.study_name = STUDY_NAME
  if IS_DEBUG:
    prob.num_trials = 3
    prob.max_num_evals = 20
  else:
    prob.num_trials = NUM_TRIALS
    prob.max_num_evals = MAX_NUM_EVALS
  # Common
  prob.num_workers = NUM_WORKERS
  # study_params in order config_file, objective, cost_func, budget in hours.
  _study_params = {
    'supernova': ('../demos_real/supernova/config_mf.json',
                  supernova_obj_mf, supernova_cost_mf, 4.0),
    'salsa': ('../demos_real/salsa/config_salsa_energy_mf.json',
              salsa_obj_mf, salsa_cost_mf, 8.0),
    'gbcsensorless': ('../demos_real/skltree/config_gbc_mf.json',
              gbcsensorless_obj_mf, gbcsensorless_cost_mf, 4.0),
    'gbrprotein': ('../demos_real/skltree/config_gbr_mf.json',
              gbrprotein_obj_mf, gbrprotein_cost_mf, 3.0),
    'gbrnaval': ('../demos_real/skltree/config_naval_gbr_mf.json',
              gbrnaval_obj_mf, gbrnaval_cost_mf, 3.0),
    'rfrnews': ('../demos_real/skltree/config_rfr_mf.json',
              rfrnews_obj_mf, rfrnews_cost_mf, 6.0),
    }
#   _study_params = {
#     'supernova': ('../demos_real/supernova/config_mf_duplicate.json',
#                   supernova_obj_mf, supernova_cost_mf, 2.0),
#     'salsa': ('../demos_real/salsa/config_salsa_energy_mf.json',
#               salsa_obj_mf, salsa_cost_mf, 4.0),
#     }
  domain_config_file, raw_func, raw_fidel_cost_func, budget_in_hours = \
    _study_params[prob.study_name]
  # noisy
  prob.noisy_evals = False
  noise_type = 'no_noise'
  noise_scale = None
  # Create domain, function_caller and worker_manager
  config = load_config_file(domain_config_file)
  func_caller = get_multifunction_caller_from_config(raw_func, config,
                  raw_fidel_cost_func=raw_fidel_cost_func, noise_type=noise_type,
                  noise_scale=noise_scale)
  # Set max_capital
  if IS_DEBUG:
    prob.max_capital = 0.05 * 60 * 60
  else:
    prob.max_capital = budget_in_hours * 60 * 60
  # Store everything in prob
  prob.func_caller = func_caller
  prob.tmp_dir = get_evaluation_tmp_dir(prob.study_name)
  prob.worker_manager = RealWorkerManager(prob.num_workers, prob.tmp_dir)
  prob.save_file_prefix = prob.study_name + ('-debug' if IS_DEBUG else '')
  prob.methods = METHODS
  prob.save_results_dir = SAVE_RESULTS_DIR
  prob.reporter = get_reporter('default')
  # evaluation options
  prob.evaluation_options = Namespace(prev_eval_points='none',
                                      initial_pool_size=0)
  return prob
def get_prob_params():
    """ Returns the problem parameters. """
    prob = Namespace()
    prob.study_name = STUDY_NAME
    if IS_DEBUG:
        prob.num_trials = 3
        prob.max_capital = 10
    else:
        prob.num_trials = NUM_TRIALS
        prob.max_capital = MAX_CAPITAL
    # Common
    prob.time_distro = TIME_DISTRO
    prob.num_workers = NUM_WORKERS
    _study_params = {
        'branin': ('synthetic/branin/config_mf.json', branin_mf,
                   cost_branin_mf, 0.1, 0, 1),
        'hartmann3_2': ('synthetic/hartmann3_2/config_mf.json', hartmann3_2_mf,
                        cost_hartmann3_2_mf, 0.1, 0, 1),
        'hartmann6_4': ('synthetic/hartmann6_4/config_mf.json', hartmann6_4_mf,
                        cost_hartmann6_4_mf, 0.1, 0, 1),
        'borehole_6': ('synthetic/borehole_6/config_mf.json', borehole_6_mf,
                       cost_borehole_6_mf, 1, 0, 1),
        'park2_4': ('synthetic/park2_4/config_mf.json', park2_4_mf,
                    cost_park2_4_mf, 0.3, 0, 1),
        'park2_3': ('synthetic/park2_3/config_mf.json', park2_3_mf,
                    cost_park2_3_mf, 0.1, 0, 1),
        'park1_3': ('synthetic/park1_3/config_mf.json', park1_3_mf,
                    cost_park1_3_mf, 0.5, 0, 1),
    }
    (domain_config_file_suffix, raw_func, raw_fidel_cost_func, _fc_noise_scale,
     _initial_pool_size, _) = _study_params[prob.study_name]
    domain_config_file = os.path.join(DRAGONFLY_EXPERIMENTS_DIR,
                                      domain_config_file_suffix)
    # noisy
    prob.noisy_evals = NOISY_EVALS
    if NOISY_EVALS:
        noise_type = 'gauss'
        noise_scale = _fc_noise_scale
    else:
        noise_type = 'no_noise'
        noise_scale = None
    # Create domain, function_caller and worker_manager
    config = load_config_file(domain_config_file)
    func_caller = get_multifunction_caller_from_config(
        raw_func,
        config,
        raw_fidel_cost_func=raw_fidel_cost_func,
        noise_type=noise_type,
        noise_scale=noise_scale)
    # Set max_capital
    if hasattr(func_caller, 'fidel_cost_func'):
        prob.max_capital = prob.max_capital * \
                           func_caller.fidel_cost_func(func_caller.fidel_to_opt)
    else:
        prob.max_capital = prob.max_capital
    # Store everything in prob
    prob.func_caller = func_caller
    prob.worker_manager = SyntheticWorkerManager(
        prob.num_workers, time_distro='caller_eval_cost')
    prob.save_file_prefix = prob.study_name + ('-debug' if IS_DEBUG else '')
    prob.methods = METHODS
    prob.save_results_dir = SAVE_RESULTS_DIR
    prob.reporter = get_reporter('default')
    # evaluation options
    prob.evaluation_options = Namespace(prev_eval_points='none',
                                        initial_pool_size=_initial_pool_size)
    return prob
コード例 #9
0
def main():
    """ Main function. """
    options = load_options(get_command_line_args(), cmd_line=True)
    # Load domain and objective
    config = load_config_file(options.config)
    if hasattr(config, 'fidel_space'):
        is_mf = True
    else:
        is_mf = False

    # Load module
    expt_dir = os.path.dirname(
        os.path.abspath(os.path.realpath(options.config)))
    if not os.path.exists(expt_dir):
        raise ValueError("Experiment directory does not exist.")
    sys.path.append(expt_dir)
    obj_module = import_module(config.name, expt_dir)
    sys.path.remove(expt_dir)

    # Set capital
    if options.max_capital < 0:
        raise ValueError(
            'max_capital (time or number of evaluations) must be positive.')

    # Call optimiser
    _print_prefix = 'Maximising' if options.max_or_min == 'max' else 'Minimising'
    call_to_optimise = {
        'single': {
            'max': maximise_function,
            'min': minimise_function
        },
        'single_mf': {
            'max': maximise_multifidelity_function,
            'min': minimise_multifidelity_function
        },
        'multi': {
            'max': multiobjective_maximise_functions,
            'min': multiobjective_minimise_functions
        },
    }
    if not options.is_multi_objective:
        if is_mf:
            print(
                '%s multi-fidelity function on\n Fidelity-Space: %s.\n Domain: %s.\n'
                % (_print_prefix, config.fidel_space, config.domain))
            opt_val, opt_pt, history = call_to_optimise['single_mf'][
                options.max_or_min](obj_module.objective,
                                    fidel_space=None,
                                    domain=None,
                                    fidel_to_opt=config.fidel_to_opt,
                                    fidel_cost_func=obj_module.cost,
                                    max_capital=options.max_capital,
                                    capital_type=options.capital_type,
                                    opt_method=options.opt_method,
                                    config=config,
                                    options=options,
                                    reporter=options.report_progress)
        else:
            print('%s function on Domain: %s.\n' %
                  (_print_prefix, config.domain))
            opt_val, opt_pt, history = call_to_optimise['single'][
                options.max_or_min](obj_module.objective,
                                    domain=None,
                                    max_capital=options.max_capital,
                                    capital_type=options.capital_type,
                                    opt_method=options.opt_method,
                                    config=config,
                                    options=options,
                                    reporter=options.report_progress)
        print('Optimum Value in %d evals: %0.4f' %
              (len(history.curr_opt_points), opt_val))
        print('Optimum Point: %s.' % (opt_pt))
    else:
        if is_mf:
            raise ValueError(
                'Multi-objective multi-fidelity optimisation has not been ' +
                'implemented yet.')
        else:
            # Check format of function caller
            if hasattr(obj_module, 'objectives'):
                objectives_to_pass = obj_module.objectives
                num_objectives = len(objectives_to_pass)
            else:
                num_objectives = obj_module.num_objectives
                objectives_to_pass = (obj_module.compute_objectives,
                                      obj_module.num_objectives)
            print('%s %d multiobjective functions on Domain: %s.\n' %
                  (_print_prefix, num_objectives, config.domain))
            print(objectives_to_pass)
            pareto_values, pareto_points, history = \
              call_to_optimise['multi'][options.max_or_min](objectives_to_pass,
              domain=None, max_capital=options.max_capital, capital_type=options.capital_type,
              opt_method=options.opt_method, config=config, options=options,
              reporter=options.report_progress)
        num_pareto_points = len(pareto_points)
        print('Found %d Pareto Points: %s.' %
              (num_pareto_points, pareto_points))
        print('Corresponding Pareto Values: %s.' % (pareto_values))
コード例 #10
0
def main():
    """ Main function. """
    # First load arguments
    all_args = dragonfly_args + get_all_euc_gp_bandit_args() + get_all_cp_gp_bandit_args() \
               + get_all_mf_euc_gp_bandit_args() + get_all_mf_cp_gp_bandit_args() \
               + get_all_euc_moo_gp_bandit_args() + get_all_cp_moo_gp_bandit_args()
    all_args = get_unique_list_of_option_args(all_args)
    options = load_options(all_args, cmd_line=True)

    # Load domain and objective
    config = load_config_file(options.config)
    if hasattr(config, 'fidel_space'):
        is_mf = True
    else:
        is_mf = False
    expt_dir = os.path.dirname(
        os.path.abspath(os.path.realpath(options.config)))
    if not os.path.exists(expt_dir):
        raise ValueError("Experiment directory does not exist.")
    objective_file_name = config.name
    obj_module = imp.load_source(
        objective_file_name, os.path.join(expt_dir,
                                          objective_file_name + '.py'))

    # Set capital
    options.capital_type = 'return_value'
    if options.budget < 0:
        budget = options.max_capital
    else:
        budget = options.budget
    if budget < 0:
        raise ValueError(
            'Specify the budget via argument budget or max_capital.')
    options.max_capital = budget

    # Call optimiser
    _print_prefix = 'Maximising' if options.max_or_min == 'max' else 'Minimising'
    call_to_optimise = {
        'single': {
            'max': maximise_function,
            'min': minimise_function
        },
        'single_mf': {
            'max': maximise_multifidelity_function,
            'min': minimise_multifidelity_function
        },
        'multi': {
            'max': multiobjective_maximise_functions,
            'min': multiobjective_minimise_functions
        },
    }
    if not options.is_multi_objective:
        if is_mf:
            print('%s function on fidel_space: %s, domain %s.' %
                  (_print_prefix, config.fidel_space, config.domain))
            opt_val, opt_pt, history = call_to_optimise['single_mf'][
                options.max_or_min](obj_module.objective,
                                    domain=None,
                                    fidel_space=None,
                                    fidel_to_opt=config.fidel_to_opt,
                                    fidel_cost_func=obj_module.cost,
                                    max_capital=options.max_capital,
                                    config=config,
                                    options=options)
        else:
            print('%s function on domain %s.' % (_print_prefix, config.domain))
            opt_val, opt_pt, history = call_to_optimise['single'][
                options.max_or_min](obj_module.objective,
                                    domain=None,
                                    max_capital=options.max_capital,
                                    config=config,
                                    options=options)
        print('Optimum Value in %d evals: %0.4f' %
              (len(history.curr_opt_points), opt_val))
        print('Optimum Point: %s.' % (opt_pt))
    else:
        if is_mf:
            raise ValueError(
                'Multi-objective multi-fidelity optimisation has not been ' +
                'implemented yet.')
        else:
            print(
                '%s multiobjective functions on domain %s with %d functions.' %
                (_print_prefix, config.domain, len(obj_module.objectives)))
            pareto_values, pareto_points, history = \
              call_to_optimise['multi'][options.max_or_min](obj_module.objectives,
              domain=None, max_capital=options.max_capital, config=config, options=options)
        num_pareto_points = len(pareto_points)
        print('Found %d Pareto Points: %s.' %
              (num_pareto_points, pareto_points))
        print('Corresponding Pareto Values: %s.' % (pareto_values))