コード例 #1
0
def backtest_PERandPBR(mainParament):
    Temp_reset = 0  #休息日剩餘天數

    Temp_result_pick = pd.DataFrame(columns=['date', '選股數量'])

    userInfo = get_user_info.data_user_info(mainParament.money_start,
                                            mainParament.date_start,
                                            mainParament.date_end)

    while userInfo.now_day <= userInfo.end_day:
        #週末直接跳過
        if userInfo.now_day.isoweekday() in [6, 7]:
            print(
                str(userInfo.now_day) + 'is 星期' +
                str(userInfo.now_day.isoweekday()))
            if userInfo.add_one_day() == False:  #加一天
                break
            continue

        #先看看台積有沒有資料,如果沒有表示這天是非週末假日跳過
        if get_stock_history.get_stock_price(
                2330, userInfo.now_day,
                get_stock_history.stock_data_kind.AdjClose) == None:
            print(str(userInfo.now_day) + "這天沒開市")
            if userInfo.add_one_day() == False:  #加一天
                break
            continue

        #休息日直接跳過
        if Temp_reset > 0 and len(userInfo.handle_stock) == 0:
            print(
                str(userInfo.now_day) + ' is reset time:第' + str(Temp_reset) +
                '天')
            if userInfo.add_one_day() == False:  #加一天
                break
            Temp_reset = Temp_reset - 1
            continue

        #開始篩選--------------------------------------
        Temp_result0 = {}
        Temp_result = pd.DataFrame()
        if bool_check_PER_pick:  #PER pick
            Temp_result0['PER'] = get_stock_history.get_PER_range(
                userInfo.now_day, mainParament.PER_start, mainParament.PER_end)
        if bool_check_PBR_pick:  #PBR pick
            Temp_result0['PBR'] = get_stock_history.get_PBR_range(
                userInfo.now_day, mainParament.PBR_start, mainParament.PBR_end)
        Temp_result = tools.MixDataFrames(Temp_result0)

        #出場訊號篩選--------------------------------------
        if len(Temp_result) < mainParament.Pick_amount and len(
                userInfo.handle_stock) > 0:
            userInfo.sell_all_stock()
            Temp_reset = mainParament.change_days

        #入場訊號篩選--------------------------------------
        if len(Temp_result
               ) > mainParament.Pick_amount and Temp_reset == 0 and len(
                   userInfo.handle_stock) == 0:
            Temp_buy0 = {'result': Temp_result}
            if bool_check_price_pick:
                Temp_buy0['price'] = get_stock_history.get_price_range(
                    userInfo.now_day, mainParament.price_high,
                    mainParament.price_low, Temp_result)
                Temp_buy0['price'] = Temp_buy0['price'].sort_values(
                    by='price', ascending=False)
            if bool_check_volume_pick:
                Temp_buy0['volume'] = get_stock_history.get_AVG_value(
                    userInfo.now_day, mainParament.volumeAVG,
                    mainParament.volumeDays, Temp_result)
                Temp_buy0['volume'] = Temp_buy0['volume'].sort_values(
                    by='volume', ascending=False)
            Temp_buy = tools.MixDataFrames(Temp_buy0)
            if Temp_buy0['price'].empty == False:
                Temp_buy = Temp_buy.sort_values(by='price', ascending=False)
            if Temp_buy0['volume'].empty == False:
                Temp_buy = Temp_buy.sort_values(by='volume', ascending=False)
            userInfo.buy_all_stock(Temp_buy)
            Temp_reset = mainParament.change_days

        #更新資訊--------------------------------------
        userInfo.Record_userInfo()
        userInfo.Recod_tradeInfo()
        Temp_result_pick = Temp_result_pick.append(
            {
                'date': userInfo.now_day,
                '選股數量': len(Temp_result)
            },
            ignore_index=True)
        #加一天----------------------------
        if userInfo.add_one_day() == False:
            break

    #最後總結算----------------------------
    Temp_result_pick.set_index('date', inplace=True)
    Temp_alldata = tools.MixDataFrames(
        {
            'draw': userInfo.Temp_result_draw,
            'pick': Temp_result_pick
        }, 'date')
    draw_figur.draw_backtest(userInfo.Temp_result_draw)
    Temp_alldata = tools.MixDataFrames(
        {
            'all': Temp_alldata,
            'userinfo': userInfo.Temp_result_All
        }, 'date')

    userInfo.Temp_result_draw.to_csv('backtestdata.csv')
    userInfo.Temp_trade_info.to_csv('backtesttrade.csv')
    Temp_alldata.to_csv('backtestAll.csv')
コード例 #2
0
def backtest_KD_pick(mainParament):
    userInfo = get_user_info.data_user_info(mainParament.money_start,
                                            mainParament.date_start,
                                            mainParament.date_end)
    Temp_result_pick = pd.DataFrame(columns=['date', '選股數量'])
    Temp_table = get_stock_history.get_stock_history(2330,
                                                     userInfo.start_day,
                                                     reGetInfo=False,
                                                     UpdateInfo=False)
    All_stock_signal = dict()
    for key, value in get_stock_info.ts.codes.items():
        if value.market == "上市" and len(value.code) == 4:
            if get_stock_history.check_no_use_stock(value.code) == True:
                print('get_stock_price: ' + str(value.code) + ' in no use')
                continue
            table = get_stock_history.get_stock_history(value.code,
                                                        userInfo.start_day,
                                                        reGetInfo=False,
                                                        UpdateInfo=False)
            table_K, table_D = talib.STOCH(table['High'],
                                           table['Low'],
                                           table['Close'],
                                           fastk_period=50,
                                           slowk_period=20,
                                           slowk_matype=0,
                                           slowd_period=20,
                                           slowd_matype=0)
            table_sma10 = talib.SMA(np.array(table['Close']), 10)
            table_sma240 = talib.SMA(np.array(table['Close']), 240)
            signal_buy = (table_K > table_D)
            signal_sell = (table_K < table_D)
            signal_sma10 = table.Close < table_sma10
            signal_sma240 = table.Close > table_sma240
            signal = signal_buy.copy()
            signal = (signal_sma10 & signal_sma240 & signal_buy)
            signal[signal_sell] = -1
            All_stock_signal[value.code] = signal
    ROE_record_day = datetime.datetime(2000, 1, 1)
    buy_data = pd.DataFrame(columns=['Date', '公司代號']).set_index('Date')
    sell_data = pd.DataFrame(columns=['Date', '公司代號']).set_index('Date')
    ROE_data = {}
    jump_day = 240
    for index, row in Temp_table.iterrows():
        while userInfo.now_day < index:
            userInfo.add_one_day()
        if jump_day > 0:
            jump_day = jump_day - 1
            continue
        if ROE_record_day <= index:
            ROE_data = {}
            ROE_record_day = tools.changeDateMonth(index, 1)
            BOOK_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -3), get_stock_history.FS_type.BS)
            CPL_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -3),
                get_stock_history.FS_type.CPL)
            ROE_data["ROE_data_1"] = pd.DataFrame({
                'ROE_data_1':
                (CPL_data["本期綜合損益總額(稅後)"] / BOOK_data['權益總額']) * 100
            })
            BOOK_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -6), get_stock_history.FS_type.BS)
            CPL_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -6),
                get_stock_history.FS_type.CPL)
            ROE_data["ROE_data_2"] = pd.DataFrame({
                'ROE_data_2':
                (CPL_data["本期綜合損益總額(稅後)"] / BOOK_data['權益總額']) * 100
            })
            BOOK_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -9), get_stock_history.FS_type.BS)
            CPL_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -9),
                get_stock_history.FS_type.CPL)
            ROE_data["ROE_data_3"] = pd.DataFrame({
                'ROE_data_3':
                (CPL_data["本期綜合損益總額(稅後)"] / BOOK_data['權益總額']) * 100
            })
            BOOK_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -12),
                get_stock_history.FS_type.BS)
            CPL_data = get_stock_history.get_allstock_financial_statement(
                tools.changeDateMonth(index, -12),
                get_stock_history.FS_type.CPL)
            ROE_data["ROE_data_4"] = pd.DataFrame({
                'ROE_data_4':
                (CPL_data["本期綜合損益總額(稅後)"] / BOOK_data['權益總額']) * 100
            })
            mask = tools.MixDataFrames(ROE_data)

            ROE_data_result = (mask["ROE_data_1"] + mask["ROE_data_2"] +
                               mask["ROE_data_3"] + mask["ROE_data_4"]) / 4
            ROE_data_result = ROE_data_result.dropna()
            ROE_data = mask["ROE_data_1"] > ROE_data_result
        buy_numbers = []
        sell_numbers = []
        for i, value in All_stock_signal.items():
            try:
                if value[index] == True:
                    if ROE_data.index.__contains__(int(i)):
                        if ROE_data[int(i)] == True:
                            buy_numbers.append(i)
                elif value[index] < 0:
                    sell_numbers.append(i)
            except:
                #print('error:' + str(index) + ' at ' + str(i))
                continue
        #出場訊號篩選--------------------------------------
        if len(userInfo.handle_stock) > 0:
            Temp_data = userInfo.handle_stock
            for key, value in list(Temp_data.items()):
                if sell_numbers.__contains__(key):
                    userInfo.sell_stock(key, value.amount)
        #入場訊號篩選--------------------------------------
        if len(buy_numbers) > 0:
            Temp_buy = pd.DataFrame(columns={'公司代號', 'volume'})
            for number in buy_numbers:
                volume = get_stock_history.get_stock_price(
                    number, tools.DateTime2String(userInfo.now_day),
                    get_stock_history.stock_data_kind.Volume)
                Temp_buy = Temp_buy.append({
                    '公司代號': number,
                    'volume': volume
                },
                                           ignore_index=True)
            Temp_buy = Temp_buy.sort_values(by='volume',
                                            ascending=False).set_index('公司代號')
            userInfo.buy_all_stock(Temp_buy)

        if len(buy_numbers) != 0:
            buy_data = buy_data.append({
                'Date': index,
                '公司代號': buy_numbers
            },
                                       ignore_index=True)
        if len(sell_numbers) != 0:
            sell_data = sell_data.append({
                'Date': index,
                '公司代號': sell_numbers
            },
                                         ignore_index=True)
        #更新資訊--------------------------------------
        userInfo.Record_userInfo()
        userInfo.Recod_tradeInfo()
        Temp_result_pick = Temp_result_pick.append(
            {
                'date': userInfo.now_day,
                '選股數量': len(buy_numbers)
            },
            ignore_index=True)
    buy_data = buy_data.set_index('Date')
    buy_data.to_csv('buy.csv')
    sell_data = sell_data.set_index('Date')
    sell_data.to_csv('sell.csv')
    #最後總結算----------------------------
    Temp_result_pick.set_index('date', inplace=True)
    Temp_alldata = tools.MixDataFrames(
        {
            'draw': userInfo.Temp_result_draw,
            'pick': Temp_result_pick
        }, 'date')
    draw_figur.draw_backtest(userInfo.Temp_result_draw.set_index('date'))
    Temp_alldata = tools.MixDataFrames(
        {
            'all': Temp_alldata,
            'userinfo': userInfo.Temp_result_All
        }, 'date')

    userInfo.Temp_result_draw.set_index('date').to_csv('backtestdata.csv')
    userInfo.Temp_trade_info.set_index('date').to_csv('backtesttrade.csv')
    Temp_alldata.set_index('date').to_csv('backtestAll.csv')
コード例 #3
0
def backtest_Regular_quota(mainParament):
    userInfo = get_user_info.data_user_info(0, mainParament.date_start,
                                            mainParament.date_end)
    buy_month = mainParament.date_start
    Temp_result_pick = pd.DataFrame(columns=['date', '選股數量'])
    while userInfo.now_day <= userInfo.end_day:
        #週末直接跳過
        if userInfo.now_day.isoweekday() in [6, 7]:
            print(
                str(userInfo.now_day) + 'is 星期' +
                str(userInfo.now_day.isoweekday()))
            if userInfo.add_one_day() == False:  #加一天
                break
            continue
        #先看看台積有沒有資料,如果沒有表示這天是非週末假日跳過
        if get_stock_history.get_stock_price(
                2330, userInfo.now_day,
                get_stock_history.stock_data_kind.AdjClose) == None:
            print(str(userInfo.now_day) + "這天沒開市")
            if userInfo.add_one_day() == False:  #加一天
                break
            continue

        #開始篩選--------------------------------------
        Temp_result = pd.DataFrame()
        Temp_result = Temp_result.append(
            {
                'date': userInfo.now_day,
                'number': mainParament.buy_number
            },
            ignore_index=True)

        #入場訊號篩選--------------------------------------
        if userInfo.now_day.month != buy_month.month and userInfo.now_day.day >= mainParament.buy_day:
            Temp_price = get_stock_history.get_stock_price(
                mainParament.buy_number, userInfo.now_day,
                get_stock_history.stock_data_kind.AdjClose)
            userInfo.now_money = userInfo.now_money + mainParament.money_start
            userInfo.start_money = userInfo.start_money + mainParament.money_start
            Temp_stockNumber = tools.Count_Stock_Amount(
                mainParament.money_start, Temp_price)
            userInfo.buy_stock(mainParament.buy_number, Temp_stockNumber)
            buy_month = userInfo.now_day

        #更新資訊--------------------------------------
        if userInfo.start_money > 0:
            userInfo.Record_userInfo()
            userInfo.Recod_tradeInfo()
        Temp_result_pick = Temp_result_pick.append(
            {
                'date': userInfo.now_day,
                '選股數量': len(Temp_result)
            },
            ignore_index=True)

        #加一天----------------------------
        if userInfo.add_one_day() == False:
            break

    #最後總結算----------------------------
    Temp_result_pick.set_index('date', inplace=True)
    Temp_alldata = tools.MixDataFrames(
        {
            'draw': userInfo.Temp_result_draw,
            'pick': Temp_result_pick
        }, 'date')
    draw_figur.draw_backtest(userInfo.Temp_result_draw)
    Temp_alldata = tools.MixDataFrames(
        {
            'all': Temp_alldata,
            'userinfo': userInfo.Temp_result_All
        }, 'date')

    userInfo.Temp_result_draw.to_csv('backtestdata.csv')
    userInfo.Temp_trade_info.to_csv('backtesttrade.csv')
    Temp_alldata.to_csv('backtestAll.csv')
コード例 #4
0
def backtest_Record_high(mainParament):
    Temp_reset = 0  #休息日剩餘天數
    userInfo = get_user_info.data_user_info(mainParament.money_start,
                                            mainParament.date_start,
                                            mainParament.date_end)
    Temp_result_pick = pd.DataFrame(columns=['date', '選股數量'])
    while userInfo.now_day <= userInfo.end_day:
        #週末直接跳過
        if userInfo.now_day.isoweekday() in [6, 7]:
            print(
                str(userInfo.now_day) + 'is 星期' +
                str(userInfo.now_day.isoweekday()))
            if userInfo.add_one_day() == False:  #加一天
                break
            continue
        #先看看台積有沒有資料,如果沒有表示這天是非週末假日跳過
        if get_stock_history.get_stock_price(
                2330, userInfo.now_day,
                get_stock_history.stock_data_kind.AdjClose) == None:
            print(str(userInfo.now_day) + "這天沒開市")
            if userInfo.add_one_day() == False:  #加一天
                break
            continue
        #休息日直接跳過
        if Temp_reset > 0 and len(userInfo.handle_stock) == 0:
            print(
                str(userInfo.now_day) + ' is reset time:第' + str(Temp_reset) +
                '天')
            if userInfo.add_one_day() == False:  #加一天
                break
            Temp_reset = Temp_reset - 1
            continue
        #出場訊號篩選--------------------------------------
        if len(userInfo.handle_stock) > 0:
            Temp_data = userInfo.handle_stock
            for key, value in list(Temp_data.items()):
                if get_stock_history.get_stock_price(
                        key, userInfo.now_day,
                        get_stock_history.stock_data_kind.AdjClose
                ) < get_stock_history.get_stock_MA(key, userInfo.now_day, 20):
                    userInfo.sell_stock(key, value.amount)
        #開始篩選--------------------------------------
        Temp_result = pd.DataFrame()
        Temp_result0 = {}
        if Temp_reset <= 0:
            if bool_check_ROE_pick == True:
                Temp_result0['ROE'] = get_stock_history.get_ROE_range(
                    userInfo.now_day, mainParament.ROE_start,
                    mainParament.ROE_end)
            if bool_check_ROE_pick == True:
                Temp_result0[
                    'ROE_last_seson'] = get_stock_history.get_ROE_range(
                        userInfo.now_day - timedelta(weeks=4), 1, 10000)
            Temp_result = tools.MixDataFrames(Temp_result0)

        #入場訊號篩選--------------------------------------
        if Temp_reset <= 0 and len(Temp_result) > 0:
            Temp_buy0 = {'result': Temp_result}
            if bool_check_PBR_pick:
                Temp_buy0['PBR'] = get_stock_history.get_PBR_range(
                    userInfo.now_day, mainParament.PBR_start,
                    mainParament.PBR_end)
            if bool_check_price_pick:
                Temp_buy0['price'] = get_stock_history.get_price_range(
                    userInfo.now_day, mainParament.price_high,
                    mainParament.price_low, Temp_result)
            if bool_check_volume_pick:
                Temp_buy0['volume'] = get_stock_history.get_AVG_value(
                    userInfo.now_day, mainParament.volumeAVG,
                    mainParament.volumeDays, Temp_result)

            Temp_buy0['point'] = pd.DataFrame(columns=['公司代號', 'point'])
            for index, row in Temp_result.iterrows():
                try:
                    temp = Temp_buy0['PBR'].at[index, 'PBR']
                except:
                    continue
                if get_stock_history.check_no_use_stock(index):
                    continue
                Temp_point = (row['ROE_x'] /
                              row['ROE_y']) / Temp_buy0['PBR'].at[index, 'PBR']
                Temp_buy0['point'] = Temp_buy0['point'].append(
                    {
                        '公司代號': index,
                        'point': Temp_point
                    }, ignore_index=True)
            Temp_buy0['point'] = Temp_buy0['point'].astype({
                '公司代號': 'int',
                'point': 'float'
            })
            Temp_buy0['point'] = Temp_buy0['point'].set_index('公司代號')
            Temp_buy = tools.MixDataFrames(Temp_buy0)

            Temp_buy1 = {'result': Temp_buy}
            Temp_buy1['high'] = get_stock_history.get_RecordHigh_range(
                userInfo.now_day, mainParament.change_days,
                mainParament.Record_high_day, Temp_buy)
            Temp_buy = tools.MixDataFrames(Temp_buy1)

            if Temp_buy.empty == False:
                Temp_buy = Temp_buy.sort_values(by='point', ascending=False)
                Temp_buy = Temp_buy.head(3)
                userInfo.buy_all_stock(Temp_buy)
        #更新資訊--------------------------------------
        if Temp_reset <= 0:
            Temp_reset = mainParament.change_days
        userInfo.Record_userInfo()
        userInfo.Recod_tradeInfo()
        Temp_result_pick = Temp_result_pick.append(
            {
                'date': userInfo.now_day,
                '選股數量': len(Temp_result)
            },
            ignore_index=True)
        #加一天----------------------------
        if userInfo.add_one_day() == False:
            break
        else:
            Temp_reset = Temp_reset - 1

    #最後總結算----------------------------
    Temp_result_pick.set_index('date', inplace=True)
    Temp_alldata = tools.MixDataFrames(
        {
            'draw': userInfo.Temp_result_draw,
            'pick': Temp_result_pick
        }, 'date')
    draw_figur.draw_backtest(userInfo.Temp_result_draw)
    Temp_alldata = tools.MixDataFrames(
        {
            'all': Temp_alldata,
            'userinfo': userInfo.Temp_result_All
        }, 'date')

    userInfo.Temp_result_draw.to_csv('backtestdata.csv')
    userInfo.Temp_trade_info.to_csv('backtesttrade.csv')
    Temp_alldata.to_csv('backtestAll.csv')
コード例 #5
0
def backtest_monthRP_Up(mainParament):
    Temp_change = 0#換股剩餘天數
    userInfo = get_user_info.data_user_info(mainParament.money_start,mainParament.date_start,mainParament.date_end)
    Temp_result_pick = pd.DataFrame(columns=['date','選股數量'])
    while userInfo.now_day <= userInfo.end_day:

        #週末直接跳過
        if userInfo.now_day.isoweekday() in [6,7]:
            print(str(userInfo.now_day) + 'is 星期' + str(userInfo.now_day.isoweekday()))
            if userInfo.add_one_day() == False:#加一天
                break
            continue
        #先看看台積有沒有資料,如果沒有表示這天是非週末假日跳過 
        if get_stock_history.get_stock_price(2330,userInfo.now_day,get_stock_history.stock_data_kind.AdjClose) == None:
            print(str(userInfo.now_day) + "這天沒開市")
            if userInfo.add_one_day() == False:#加一天
                break
            continue
        
        #出場訊號篩選--------------------------------------
        if Temp_change <= 0 and len(userInfo.handle_stock) > 0:
            userInfo.sell_all_stock()

        #開始篩選--------------------------------------
        Temp_result0 = {}
        Temp_result = pd.DataFrame()
        if Temp_change <= 0:
            if bool_check_monthRP_pick:#月營收升高篩選(月為單位)
                Temp_result0['month'] = get_stock_history.get_monthRP_up(userInfo.now_day,mainParament.smoothAVG,mainParament.upMonth)
            if bool_check_ROE_pick:#ROE
                Temp_result0['ROE'] = get_stock_history.get_ROE_range(userInfo.now_day,mainParament.ROE_start,mainParament.ROE_end)
            if bool_check_PBR_pick:#PBR
                Temp_result0['PBR'] = get_stock_history.get_PBR_range(userInfo.now_day,mainParament.PBR_start,mainParament.PBR_end)
            if bool_check_PER_pick:#PER
                Temp_result0['PER'] = get_stock_history.get_PER_range(userInfo.now_day,mainParament.PER_start,mainParament.PER_end)
            Temp_result = tools.MixDataFrames(Temp_result0)

        #入場訊號篩選--------------------------------------
        if Temp_change <= 0 and len(userInfo.handle_stock) <= 0 and len(Temp_result) > mainParament.Pick_amount:
            Temp_buy0 = {'result':Temp_result}
            if bool_check_price_pick:
                Temp_buy0['price'] = get_stock_history.get_price_range(userInfo.now_day,mainParament.price_high,mainParament.price_low,Temp_result)
                Temp_buy0['price'] = Temp_buy0['price'].sort_values(by='price', ascending=False)
            if bool_check_volume_pick:
                Temp_buy0['volume'] = get_stock_history.get_AVG_value(userInfo.now_day,mainParament.volumeAVG,mainParament.volumeDays,Temp_result)
                Temp_buy0['volume'] = Temp_buy0['volume'].sort_values(by='volume', ascending=False)
            Temp_buy = tools.MixDataFrames(Temp_buy0)
            if Temp_buy0.__contains__('price') and Temp_buy0['price'].empty == False:
               Temp_buy = Temp_buy.sort_values(by='price', ascending=False)
            if Temp_buy0.__contains__('volume') and Temp_buy0['volume'].empty == False:
               Temp_buy = Temp_buy.sort_values(by='volume', ascending=False)
            userInfo.buy_all_stock(Temp_buy)

        #更新資訊--------------------------------------
        if Temp_change <= 0 and len(userInfo.handle_stock) > 0:
            Temp_change = mainParament.change_days
        userInfo.Record_userInfo()
        userInfo.Recod_tradeInfo()
        Temp_result_pick = Temp_result_pick.append({'date':userInfo.now_day,
                                                '選股數量':len(Temp_result)},ignore_index = True)
        #加一天----------------------------
        if userInfo.add_one_day() == False:
            break
        else:
            Temp_change = Temp_change - 1

    #最後總結算----------------------------
    Temp_result_pick.set_index('date',inplace=True)
    Temp_alldata = tools.MixDataFrames({'draw':userInfo.Temp_result_draw,'pick':Temp_result_pick},'date')
    draw_backtest(userInfo.Temp_result_draw)
    Temp_alldata = tools.MixDataFrames({'all':Temp_alldata,'userinfo':userInfo.Temp_result_All},'date')
    
    userInfo.Temp_result_draw.to_csv('backtestdata.csv')
    userInfo.Temp_trade_info.to_csv('backtesttrade.csv')
    Temp_alldata.to_csv('backtestAll.csv')