コード例 #1
0
def test_get_sparse():
    db = dt.Gdx("test.gdx")
    dense = dt.Gdx("test.gdx", sparse=False)
    assert len(dense["qY"]) > len(db["qY"])
    assert len(dense["qY"]) == len(
        pd.MultiIndex.from_product(db.get("s_", "t")))
    assert len(dense["pBolig"]) == len(db["t"])
コード例 #2
0
def test_export_scalar_with_changes():
    db = dt.Gdx("test.gdx")
    db["eHh"] = db["eHh"] * 2
    db.export("test_export.gdx", relative_path=True)

    old, new = dt.Gdx("test.gdx"), dt.Gdx("test_export.gdx")
    assert approximately_equal(old["eHh"] * 2, new["eHh"])
コード例 #3
0
def test_export_added_variable():
    db = dt.Gdx("test.gdx")
    db.create_variable("foo", [db.a, db.t],
                       explanatory_text="Variable added from Python.")
    db["foo"] = 42
    db.export("test_export.gdx", relative_path=True)
    assert all(approximately_equal(dt.Gdx("test_export.gdx")["foo"], 42))
コード例 #4
0
def test_copy_set():
    db = dt.Gdx("test.gdx")
    db["alias"] = db["s"]
    db["alias"].name = "alias"
    index = db["alias"]
    domains = [
        "*" if i in (None, index.name) else i
        for i in db.get_domains_from_index(index, index.name)
    ]
    db.database.add_set_dc(index.name, domains, "")
    index = index.copy()
    index.domains = domains
    db.series[index.name] = index
    db.export("test_export.gdx", relative_path=True)
    assert all(dt.Gdx("test_export.gdx")["alias"] == db["s"])
コード例 #5
0
def get_reference_database():
    if dt.REFERENCE_DATABASE is None:
        import easygui
        dt.REFERENCE_DATABASE = dt.Gdx(
            easygui.fileopenbox("Select reference gdx file",
                                filetypes=["*.gdx"]))
    return dt.REFERENCE_DATABASE
コード例 #6
0
def test_export_NAs():
    db = dt.GamsPandasDatabase()
    t = db.create_set("t", range(5))
    p = db.create_parameter("p", t)
    assert len(db["p"]) == 5
    assert len(db.symbols["p"]) == 0
    db.export("test_export.gdx")

    db = dt.Gdx("test_export.gdx")
    assert all(pd.isna(db["p"]))
    assert len(db["p"]) == 0
    assert len(db.symbols["p"]) == 0
コード例 #7
0
def test_gdx_read():
    db = dt.Gdx("test.gdx")
    assert approximately_equal(db["qY"]["byg", 2025], 257.55)
    assert approximately_equal(db["qI_s"]["IB", "fre", 2025], 7.41)
    assert approximately_equal(db["eHh"], 1.25)
    assert db["fp"] == 1.0178
    assert all(
        approximately_equal(db["inf_factor"],
                            db["fp"]**(2010 - db["inf_factor"].index)))
    assert db["s"].name == "s_"
    assert db.vHh.loc["NetFin", "tot", 1970] == 0
    assert set(db["vHh"].index.get_level_values("a_")).issubset(set(db["a_"]))
コード例 #8
0
def test_import_export_empty():
    # Create empty GamsPandasDatabase and alias creation methods
    db = dt.GamsPandasDatabase()
    Par, Var, Set = db.create_parameter, db.create_variable, db.create_set

    # Create sets from scratch
    t = Set("t", range(2000, 2021), "Årstal")
    s = Set("s", ["tjenester", "fremstilling"], "Brancher",
            ["Tjenester", "Fremstilling"])
    p = Par("p", [s, t])
    v = Var("v", [s, t])
    db.p = p.loc[[], []]
    db.v = p.loc[[], []]

    db.export("test_export.gdx")
    db = dt.Gdx("test_export.gdx")

    db.p.loc[t, s] = 1
    db.v.loc[t, s] = 1
    db.export("test_export.gdx")
    db = dt.Gdx("test_export.gdx")

    assert all(db.p == 1)
    assert all(db.v == 1)
コード例 #9
0
def test_create_parameter():
    db = dt.GamsPandasDatabase()
    db.create_parameter("scalar", data=3.2)
    assert db.scalar == 3.2
    db.create_parameter("vector",
                        data=[1, 2],
                        index=pd.Index(["a", "b"], name="ab"),
                        add_missing_domains=True)
    assert all(db.vector == [1, 2])

    db.create_parameter("dataframe",
                        data=pd.DataFrame([
                            [2025, "ser", 3],
                            [2025, "goo", 2],
                            [2035, "ser", 6],
                            [2035, "goo", 4],
                        ],
                                          columns=["t", "s", "value"]),
                        add_missing_domains=True)
    db.export("test_export.gdx")
    assert dt.Gdx("test_export.gdx")["scalar"] == 3.2
    assert all(dt.Gdx("test_export.gdx")["vector"] == [1, 2])
    assert all(db.s == ["ser", "goo"])
    assert all(db.t == [2025, 2035])
コード例 #10
0
def test_export_set_with_changes():
    db = dt.Gdx("test.gdx")
    db["s"].texts["tje"] = "New text"
    db.export("test_export.gdx", relative_path=True)
    assert dt.Gdx("test_export.gdx")["s"].texts["tje"] == "New text"
コード例 #11
0
def test_export_variable_with_changes():
    db = dt.Gdx("test.gdx")
    db["qY"] = db["qY"] * 2
    db.export("test_export.gdx", relative_path=True)
    old, new = dt.Gdx("test.gdx"), dt.Gdx("test_export.gdx")
    assert all(old["qY"] * 2 == new["qY"])
コード例 #12
0
def test_export_with_no_changes():
    dt.Gdx("test.gdx").export("test_export.gdx", relative_path=True)
    assert round(os.stat("test.gdx").st_size,
                 -5) == round(os.stat("test_export.gdx").st_size, -5)
コード例 #13
0
def test_multiply_with_different_sets():
    db = dt.Gdx("test.gdx")
    i, s = db["i"], db["s"]
    result = (db["pI"] * db["qI_s"].loc[i, s]).groupby("t").sum() / db["vI"][
        "iTot"]  # Using pI_s would give exact 1
    assert all(approximately_equal(result.loc[2030:], 1))
コード例 #14
0
import dreamtools as dt

# Åben gdx fil
gdx = dt.Gdx("test.gdx")
gdx.export("export.gdx")

# Hent sets fra gdx
s, i, t = gdx.get("s", "i", "t")

# Hent variable fra gdx
qY, qBNP, qI_s = gdx.get("qY", "qBNP", "qI_s")

# Plot variabel
qBNP.plot()

# Plot variabel i begrænset periode
qBNP.plot(2010, 2020)

# Plot variabel begrænset til et enkelt element eller set
qY["tot"].plot()
qY[s].plot()

# Plot flere variable sammen
dt.plot(qY[s], qBNP, start=2010, end=2020)

# Hvis en serie har flere dimensioner, skal vi skrive .loc for at begrænse med på mere end første dimension. Fx:
qI_s.loc[i, s]

# Vi kan stadig begænse på første dimension uden .loc
qI_s[i]