コード例 #1
0
def execute(gpu,
            exp_batch,
            exp_alias,
            ckpt,
            model,
            city_name='Town01',
            memory_use=0.2,
            host='127.0.0.1'):
    # host,port,gpu_number,path,show_screen,resolution,noise_type,config_path,type_of_driver,experiment_name,city_name,game,drivers_name
    #drive_config.city_name = city_name
    # TODO Eliminate drive config.

    print("Running ", __file__, " On GPU ", gpu, "of experiment name ",
          exp_alias)
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu
    sys.stdout = open(str(os.getpid()) + ".out", "a", buffering=1)

    carla_process, port = start_carla_simulator(gpu, exp_batch, exp_alias,
                                                city_name)
    merge_with_yaml(os.path.join(exp_batch, exp_alias + '.yaml'))
    set_type_of_process('test')
    experiment_suite = TestSuite()

    # coil_icra, coil_unit, wgangp_lsd, unit_task_only
    architecture_name = model

    while True:
        try:
            with make_carla_client(host, port) as client:

                checkpoint = torch.load(os.path.join(ckpt))
                coil_agent = CoILAgent(checkpoint, architecture_name)
                run_driving_benchmark(
                    coil_agent, experiment_suite, city_name,
                    exp_batch + '_' + exp_alias + 'iteration', False, host,
                    port)

                break

        except TCPConnectionError as error:
            logging.error(error)
            time.sleep(1)
            carla_process.kill()

        except KeyboardInterrupt:
            carla_process.kill()
        except:
            traceback.print_exc()
            carla_process.kill()

    carla_process.kill()
コード例 #2
0
        '--output_folder',
        metavar='P',
        default=None,
        type=str,
        help=
        'The folder to store images received by the network and its activations'
    )

    args = argparser.parse_args()
    args.width, args.height = [int(x) for x in args.res.split('x')]
    merge_with_yaml(os.path.join('configs', args.folder, args.exp + '.yaml'))
    checkpoint = torch.load(
        os.path.join('_logs', args.folder, args.exp, 'checkpoints',
                     str(args.checkpoint) + '.pth'))

    agent = CoILAgent(checkpoint, '_', args.carla_version)
    # Decide the version
    if args.carla_version == '0.9':

        try:
            sys.path.append(
                glob.glob(
                    '**/carla-*%d.%d-%s.egg' %
                    (sys.version_info.major, sys.version_info.minor,
                     'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
        except IndexError:
            pass

        import model_view.carla09interface as carla09interface

        carla09interface.game_loop(args, agent)
コード例 #3
0
ファイル: run_drive.py プロジェクト: heshameraqi/coiltraine
def driving_benchmark(checkpoint_number, gpu, town_name, experiment_set, exp_batch, exp_alias,
                      params, control_filename, task_list):
    """
        The function to run a driving benchmark, it starts a carla process, run a driving
        benchmark with a certain agent, then log the results.
    Args:
        checkpoint_number: Checkpoint used for the agent being benchmarked
        gpu: The GPU allocated for the driving benchmark
        town_name: The name of the CARLA town
        experiment_set: The experiment set ( inside the drive suites)
        exp_batch: The batch which this experiment is part of
        exp_alias: The alias used to identify all the experiments
        params: Params for the driving, all of them passed on the command line.
        control_filename: the output file name for the results of the benchmark
        task_list: the list of tasks

    Returns:

    """

    try:
        """ START CARLA"""
        carla_process, port, out = start_carla_simulator(gpu, town_name,
                                                         params['docker'])

        checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias
                                             , 'checkpoints', str(checkpoint_number) + '.pth'))

        coil_agent = CoILAgent(checkpoint, town_name)
        print ("Checkpoint ", checkpoint_number)
        coil_logger.add_message('Iterating', {"Checkpoint": checkpoint_number}, checkpoint_number)

        """ MAIN PART, RUN THE DRIVING BENCHMARK """
        run_driving_benchmark(coil_agent, experiment_set, town_name,
                              exp_batch + '_' + exp_alias + '_' + str(checkpoint_number)
                              + '_drive_' + control_filename
                              , True, params['host'], port)

        """ Processing the results to write a summary"""
        path = exp_batch + '_' + exp_alias + '_' + str(checkpoint_number) \
               + '_' + g_conf.PROCESS_NAME.split('_')[0] + '_' + control_filename \
               + '_' + g_conf.PROCESS_NAME.split('_')[1] + '_' + g_conf.PROCESS_NAME.split('_')[2]

        benchmark_json_path = os.path.join(get_latest_path(path), 'metrics.json')
        with open(benchmark_json_path, 'r') as f:
            benchmark_dict = json.loads(f.read())

        averaged_dict = compute_average_std_separatetasks([benchmark_dict],
                                                          experiment_set.weathers,
                                                          len(experiment_set.build_experiments()))

        file_base = os.path.join('_logs', exp_batch, exp_alias,
                                 g_conf.PROCESS_NAME + '_csv', control_filename)

        """ Write the  CSV for the resulting driving performance """
        for i in range(len(task_list)):
            write_data_point_control_summary(file_base, task_list[i],
                                             averaged_dict, checkpoint_number, i)

        """ Write the  paths for the resulting driving performance """

        plot_episodes_tracks(exp_batch, exp_alias,
                             checkpoint_number, town_name, g_conf.PROCESS_NAME.split('_')[1])

        carla_process.kill()
        """ KILL CARLA, FINISHED THIS BENCHMARK"""
        subprocess.call(['docker', 'stop', out[:-1]])


    except TCPConnectionError as error:
        logging.error(error)
        time.sleep(1)
        carla_process.kill()
        subprocess.call(['docker', 'stop', out[:-1]])
        coil_logger.add_message('Error', {'Message': 'TCP serious Error'})
        exit(1)

    except KeyboardInterrupt:
        carla_process.kill()
        subprocess.call(['docker', 'stop', out[:-1]])
        coil_logger.add_message('Error', {'Message': 'Killed By User'})
        exit(1)
    except:
        traceback.print_exc()
        carla_process.kill()
        subprocess.call(['docker', 'stop', out[:-1]])
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
        exit(1)
コード例 #4
0
def execute(gpu, exp_batch, exp_alias, city_name='Town01', memory_use=0.2, host='127.0.0.1'):
    # host,port,gpu_number,path,show_screen,resolution,noise_type,config_path,type_of_driver,experiment_name,city_name,game,drivers_name
    #drive_config.city_name = city_name
    # TODO Eliminate drive config.

    print("Running ", __file__, " On GPU ", gpu, "of experiment name ", exp_alias)
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu


    if not os.path.exists('_output_logs'):
        os.mkdir('_output_logs')


    sys.stdout = open(os.path.join('_output_logs',
                      g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1)


    #vglrun - d:7.$GPU $CARLA_PATH / CarlaUE4 / Binaries / Linux / CarlaUE4 / Game / Maps /$TOWN - windowed - benchmark - fps = 10 - world - port =$PORT;
    #sleep    100000

    carla_process, port = start_carla_simulator(gpu, exp_batch, exp_alias, city_name)


    merge_with_yaml(os.path.join('configs', exp_batch, exp_alias+'.yaml'))
    set_type_of_process('drive', city_name)



    log_level = logging.WARNING

    logging.StreamHandler(stream=None)
    logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)

    # TODO we have some external class that control this weather thing.

    """
    if city_name == 'Town01':
        experiment_suite = ECCVTrainingSuite()
    else:
        experiment_suite = ECCVGeneralizationSuite()
    """
    experiment_suite = TestSuite()

    coil_logger.add_message('Loading', {'Poses': experiment_suite._poses()})



    while True:
        try:
            coil_logger.add_message('Loading', {'CARLAClient': host+':'+str(port)})
            with make_carla_client(host, port) as client:


                # Now actually run the driving_benchmark

                latest = 0
                # While the checkpoint is not there
                while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):


                    # Get the correct checkpoint
                    if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE):

                        latest = get_next_checkpoint(g_conf.TEST_SCHEDULE)
                        checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias
                                                             , 'checkpoints', str(latest) + '.pth'))

                        coil_agent = CoILAgent(checkpoint)
                        coil_logger.add_message({'Iterating': {"Checkpoint": latest}})
                        # TODO: Change alias to actual experiment name.
                        run_driving_benchmark(coil_agent, experiment_suite, city_name,
                                              exp_batch + '_' + exp_alias + '_' + str(latest)
                                              , False, host, port)

                        # Read the resulting dictionary
                        #with open(os.path.join('_benchmark_results',
                        #                       exp_batch+'_'+exp_alias + 'iteration', 'metrics.json')
                        #          , 'r') as f:
                        #    summary_dict = json.loads(f.read())

                        # TODO: When you add the message you need to check if the experiment continues properly



                        # TODO: WRITE AN EFICIENT PARAMETRIZED OUTPUT SUMMARY FOR TEST.

                        #test_agent.finish_model()

                        #test_agent.write(results)

                    else:
                        time.sleep(0.1)

                break


        except TCPConnectionError as error:
            logging.error(error)
            time.sleep(1)
            carla_process.kill()
            break
        except KeyboardInterrupt:
            carla_process.kill()
            coil_logger.add_message('Error', {'Message': 'Killed By User'})
            break
        except:
            traceback.print_exc()
            carla_process.kill()
            coil_logger.add_message('Error', {'Message': 'Something Happened'})
            break

    carla_process.kill()
コード例 #5
0
def execute(gpu,
            exp_batch,
            exp_alias,
            drive_conditions,
            memory_use=0.2,
            host='127.0.0.1',
            suppress_output=True,
            no_screen=False):

    try:

        print("Running ", __file__, " On GPU ", gpu, "of experiment name ",
              exp_alias)
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu

        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))

        print("drive cond", drive_conditions)
        exp_set_name, town_name = drive_conditions.split('_')

        if g_conf.USE_ORACLE:
            control_filename = 'control_output_auto.csv'
        else:
            control_filename = 'control_output.csv'

        if exp_set_name == 'ECCVTrainingSuite':
            experiment_set = ECCVTrainingSuite()
            set_type_of_process('drive', drive_conditions)
        elif exp_set_name == 'ECCVGeneralizationSuite':
            experiment_set = ECCVGeneralizationSuite()
            set_type_of_process('drive', drive_conditions)
        elif exp_set_name == 'TestT1':
            experiment_set = TestT1()
            set_type_of_process('drive', drive_conditions)
        elif exp_set_name == 'TestT2':
            experiment_set = TestT2()
            set_type_of_process('drive', drive_conditions)
        else:

            raise ValueError(" Exp Set name is not correspondent to a city")

        if suppress_output:
            sys.stdout = open(os.path.join(
                '_output_logs',
                g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            #sys.stderr = open(os.path.join('_output_logs',
            #                  'err_'+g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"),
            #                  "a", buffering=1)

        carla_process, port = start_carla_simulator(gpu, town_name, no_screen)

        coil_logger.add_message(
            'Loading', {'Poses': experiment_set.build_experiments()[0].poses})

        coil_logger.add_message('Loading',
                                {'CARLAClient': host + ':' + str(port)})

        # Now actually run the driving_benchmark

        latest = get_latest_evaluated_checkpoint()
        if latest is None:  # When nothing was tested, get latest returns none, we fix that.
            latest = 0

            csv_outfile = open(
                os.path.join('_logs', exp_batch, exp_alias,
                             g_conf.PROCESS_NAME + '_csv', control_filename),
                'w')

            csv_outfile.write(
                "%s,%s,%s,%s,%s,%s,%s,%s\n" %
                ('step', 'episodes_completion', 'intersection_offroad',
                 'intersection_otherlane', 'collision_pedestrians',
                 'collision_vehicles', 'episodes_fully_completed',
                 'driven_kilometers'))
            csv_outfile.close()

        # Write the header of the summary file used conclusion
        # While the checkpoint is not there

        while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):

            try:
                # Get the correct checkpoint
                if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE):

                    latest = get_next_checkpoint(g_conf.TEST_SCHEDULE)
                    checkpoint = torch.load(
                        os.path.join('_logs', exp_batch, exp_alias,
                                     'checkpoints',
                                     str(latest) + '.pth'))

                    coil_agent = CoILAgent(checkpoint, town_name)

                    coil_logger.add_message('Iterating',
                                            {"Checkpoint": latest}, latest)

                    run_driving_benchmark(
                        coil_agent, experiment_set, town_name,
                        exp_batch + '_' + exp_alias + '_' + str(latest) +
                        '_drive_' + control_filename[:-4], True, host, port)

                    path = exp_batch + '_' + exp_alias + '_' + str(latest) \
                           + '_' + g_conf.PROCESS_NAME.split('_')[0] + '_' + control_filename[:-4] \
                           + '_' + g_conf.PROCESS_NAME.split('_')[1] + '_' + g_conf.PROCESS_NAME.split('_')[2]

                    print(path)
                    print("Finished")
                    benchmark_json_path = os.path.join(get_latest_path(path),
                                                       'metrics.json')
                    with open(benchmark_json_path, 'r') as f:
                        benchmark_dict = json.loads(f.read())

                    averaged_dict = compute_average_std(
                        [benchmark_dict], experiment_set.weathers,
                        len(experiment_set.build_experiments()))
                    print(averaged_dict)
                    csv_outfile = open(
                        os.path.join('_logs', exp_batch, exp_alias,
                                     g_conf.PROCESS_NAME + '_csv',
                                     control_filename), 'a')

                    csv_outfile.write(
                        "%d,%f,%f,%f,%f,%f,%f,%f\n" %
                        (latest, averaged_dict['episodes_completion'],
                         averaged_dict['intersection_offroad'],
                         averaged_dict['intersection_otherlane'],
                         averaged_dict['collision_pedestrians'],
                         averaged_dict['collision_vehicles'],
                         averaged_dict['episodes_fully_completed'],
                         averaged_dict['driven_kilometers']))

                    csv_outfile.close()

                    # TODO: When you add the message you need to check if the experiment continues properly

                    # TODO: WRITE AN EFICIENT PARAMETRIZED OUTPUT SUMMARY FOR TEST.

                else:
                    time.sleep(0.1)

            except TCPConnectionError as error:
                logging.error(error)
                time.sleep(1)
                carla_process.kill()
                coil_logger.add_message('Error',
                                        {'Message': 'TCP serious Error'})
                exit(1)
            except KeyboardInterrupt:
                carla_process.kill()
                coil_logger.add_message('Error', {'Message': 'Killed By User'})
                exit(1)
            except:
                traceback.print_exc()
                carla_process.kill()
                coil_logger.add_message('Error',
                                        {'Message': 'Something Happened'})
                exit(1)

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        traceback.print_exc()
        carla_process.kill()
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except:
        traceback.print_exc()
        carla_process.kill()
        coil_logger.add_message('Error', {'Message': 'Something happened'})

    carla_process.kill()
コード例 #6
0
def execute(gpu,
            exp_batch,
            exp_alias,
            city_name='Town01',
            memory_use=0.2,
            host='127.0.0.1'):
    # host,port,gpu_number,path,show_screen,resolution,noise_type,config_path,type_of_driver,experiment_name,city_name,game,drivers_name
    #drive_config.city_name = city_name
    # TODO Eliminate drive config.

    print("Running ", __file__, " On GPU ", gpu, "of experiment name ",
          exp_alias)
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu

    sys.stdout = open(str(os.getpid()) + ".out", "a", buffering=1)

    #vglrun - d:7.$GPU $CARLA_PATH / CarlaUE4 / Binaries / Linux / CarlaUE4 / Game / Maps /$TOWN - windowed - benchmark - fps = 10 - world - port =$PORT;
    #sleep    100000

    carla_process, port = start_carla_simulator(gpu, exp_batch, exp_alias,
                                                city_name)

    merge_with_yaml(os.path.join(exp_batch, exp_alias + '.yaml'))
    set_type_of_process('test')

    #test_agent = CarlaDrive(experiment_name)

    # TODO we have some external class that control this weather thing.
    """
    if city_name == 'Town01':
        experiment_suite = ECCVTrainingSuite()
    else:
        experiment_suite = ECCVGeneralizationSuite()
    """
    experiment_suite = TestSuite()

    while True:
        try:

            with make_carla_client(host, port) as client:

                # Now actually run the driving_benchmark

                latest = 0
                # While the checkpoint is not there
                while not maximun_checkpoint_reach(latest,
                                                   g_conf.TEST_SCHEDULE):

                    # Get the correct checkpoint
                    if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE):

                        latest = get_next_checkpoint(g_conf.TEST_SCHEDULE)
                        checkpoint = torch.load(
                            os.path.join('_logs', exp_batch, exp_alias,
                                         'checkpoints',
                                         str(latest) + '.pth'))

                        coil_agent = CoILAgent(checkpoint)
                        run_driving_benchmark(
                            coil_agent, experiment_suite, city_name,
                            exp_batch + '_' + exp_alias + 'iteration', False,
                            host, port)

                        # Read the resulting dictionary
                        with open(
                                os.path.join(
                                    '_benchmark_results',
                                    exp_batch + '_' + exp_alias + 'iteration',
                                    'metrics.json'), 'r') as f:
                            summary_dict = json.loads(f.read())

                        # TODO: When you add the message you need to check if the experiment continues properly
                        coil_logger.add_message(
                            {'Running': {
                                "DBSummary": summary_dict
                            }})

                        #test_agent.finish_model()

                        #test_agent.write(results)

                    else:
                        time.sleep(0.1)
                # TODO: is this really needed ??? I believe not.
                #monitorer.export_results(os.path.join('_benchmark_results',
                #                                      exp_batch + '_' +exp_alias +'iteration'))
                break

        except TCPConnectionError as error:
            logging.error(error)
            time.sleep(1)
            carla_process.kill()

        except KeyboardInterrupt:
            carla_process.kill()
        except:
            traceback.print_exc()
            carla_process.kill()

    carla_process.kill()