import numpy as np import torch random.seed(1) np.random.seed(1) torch.manual_seed(1) config = Config() config.seed = 1 config.environment = Bit_Flipping_Environment(4) config.num_episodes_to_run = 2000 config.file_to_save_data_results = None config.file_to_save_results_graph = None config.visualise_individual_results = False config.visualise_overall_agent_results = False config.randomise_random_seed = False config.runs_per_agent = 1 config.use_GPU = False config.hyperparameters = { "DQN_Agents": { "learning_rate": 0.005, "batch_size": 64, "buffer_size": 40000, "epsilon": 0.1, "epsilon_decay_rate_denominator": 200, "discount_rate": 0.99, "tau": 0.1, "alpha_prioritised_replay": 0.6, "beta_prioritised_replay": 0.4, "incremental_td_error": 1e-8, "update_every_n_steps": 3,
config = Config() config.environment = gym.make("Taxi-v2") config.seed = 1 config.env_parameters = {} config.num_episodes_to_run = 2000 config.file_to_save_data_results = None config.file_to_save_results_graph = None config.show_solution_score = False config.visualise_individual_results = False config.visualise_overall_agent_results = True config.standard_deviation_results = 1.0 config.runs_per_agent = 3 config.use_GPU = False config.overwrite_existing_results_file = False config.randomise_random_seed = True config.save_model = False linear_hidden_units = [32, 32] learning_rate = 0.01 buffer_size = 100000 batch_size = 256 batch_norm = False embedding_dimensionality = 10 gradient_clipping_norm = 5 update_every_n_steps = 1 learning_iterations = 1 epsilon_decay_rate_denominator = 400 discount_rate = 0.99 tau = 0.01 sequitur_k = 2