コード例 #1
0
 def __init__(self,
              camera_stream,
              segmented_stream,
              name,
              flags,
              log_file_name=None,
              csv_file_name=None):
     camera_stream.add_callback(self.on_msg_camera_stream,
                                [segmented_stream])
     self._name = name
     self._flags = flags
     self._logger = erdos.utils.setup_logging(name, log_file_name)
     self._csv_logger = erdos.utils.setup_csv_logging(
         name + '-csv', csv_file_name)
     arch = "drn_d_22"
     classes = 19
     self._pallete = drn.segment.CARLA_CITYSCAPE_PALETTE
     self._model = DRNSeg(arch,
                          classes,
                          pretrained_model=None,
                          pretrained=False)
     self._model.load_state_dict(
         torch.load(self._flags.segmentation_model_path))
     if torch.cuda.is_available():
         self._model = torch.nn.DataParallel(self._model).cuda()
コード例 #2
0
 def __init__(self,
              name,
              output_stream_name,
              flags,
              log_file_name=None,
              csv_file_name=None):
     super(SegmentationDRNOperator, self).__init__(name)
     self._flags = flags
     self._logger = setup_logging(self.name, log_file_name)
     self._csv_logger = setup_csv_logging(self.name + '-csv', csv_file_name)
     self._output_stream_name = output_stream_name
     arch = "drn_d_22"
     classes = 19
     pretrained = "dependencies/data/drn_d_22_cityscapes.pth"
     self._pallete = drn.segment.CITYSCAPE_PALETTE
     # TODO(ionel): Figure out how to set GPU memory fraction.
     self._model = DRNSeg(arch,
                          classes,
                          pretrained_model=None,
                          pretrained=False)
     self._model.load_state_dict(torch.load(pretrained))
     # TODO(ionel): Automatically detect if GPU is available.
     if self._flags.segmentation_gpu:
         self._model = torch.nn.DataParallel(self._model).cuda()
     self._last_seq_num = -1
コード例 #3
0
 def __init__(self,
              name,
              output_stream_name,
              flags,
              log_file_name=None,
              csv_file_name=None):
     super(SegmentationDRNOperator, self).__init__(name)
     self._flags = flags
     self._logger = setup_logging(self.name, log_file_name)
     self._csv_logger = setup_csv_logging(self.name + '-csv', csv_file_name)
     self._output_stream_name = output_stream_name
     arch = "drn_d_22"
     classes = 19
     self._pallete = drn.segment.CITYSCAPE_PALETTE
     # TODO(ionel): Figure out how to set GPU memory fraction.
     self._model = DRNSeg(
         arch, classes, pretrained_model=None, pretrained=False)
     self._model.load_state_dict(
         torch.load(self._flags.segmentation_drn_model_path))
     if torch.cuda.is_available():
         self._model = torch.nn.DataParallel(self._model).cuda()
コード例 #4
0
class SegmentationDRNOperator(erdos.Operator):
    """Semantically segments frames using a DRN segmentation model.

    The operator receives frames on a camera stream, and runs a model for each
    frame.

    Args:
        camera_stream (:py:class:`erdos.ReadStream`): The stream on which
            camera frames are received.
        segmented_stream (:py:class:`erdos.WriteStream`): Stream on which the
            operator sends
            :py:class:`~pylot.perception.messages.SegmentedFrameMessage`
            messages.
        flags (absl.flags): Object to be used to access absl flags.
    """
    def __init__(self, camera_stream, segmented_stream, flags):
        camera_stream.add_callback(self.on_msg_camera_stream,
                                   [segmented_stream])
        self._flags = flags
        self._logger = erdos.utils.setup_logging(self.config.name,
                                                 self.config.log_file_name)
        arch = "drn_d_22"
        classes = 19
        self._pallete = drn.segment.CARLA_CITYSCAPE_PALETTE
        self._model = DRNSeg(arch,
                             classes,
                             pretrained_model=None,
                             pretrained=False)
        self._model.load_state_dict(
            torch.load(self._flags.segmentation_model_path))
        if torch.cuda.is_available():
            self._model = torch.nn.DataParallel(self._model).cuda()

    @staticmethod
    def connect(camera_stream):
        """Connects the operator to other streams.

        Args:
            camera_stream (:py:class:`erdos.ReadStream`): The stream on which
                camera frames are received.

        Returns:
            :py:class:`erdos.WriteStream`: Stream on which the operator sends
            :py:class:`~pylot.perception.messages.SegmentedFrameMessage`
            messages.
        """
        segmented_stream = erdos.WriteStream()
        return [segmented_stream]

    @erdos.profile_method()
    def on_msg_camera_stream(self, msg, segmented_stream):
        """Invoked upon the receipt of a message on the camera stream.

        Args:
            msg: A :py:class:`~pylot.perception.messages.FrameMessage`.
            segmented_stream (:py:class:`erdos.WriteStream`): Stream on which
                the operator sends
                :py:class:`~pylot.perception.messages.SegmentedFrameMessage`
                messages.
        """
        self._logger.debug('@{}: {} received message'.format(
            msg.timestamp, self.config.name))
        start_time = time.time()
        assert msg.frame.encoding == 'BGR', 'Expects BGR frames'
        image = torch.from_numpy(msg.frame.frame.transpose(
            [2, 0, 1])).unsqueeze(0).float()
        image_var = Variable(image, requires_grad=False, volatile=True)

        final = self._model(image_var)[0]
        _, pred = torch.max(final, 1)

        pred = pred.cpu().data.numpy()[0]
        # After we apply the pallete, the image is in RGB format
        image_np = self._pallete[pred.squeeze()]

        # Get runtime in ms.
        runtime = (time.time() - start_time) * 1000
        frame = SegmentedFrame(image_np, 'cityscapes', msg.frame.camera_setup)
        if self._flags.visualize_segmentation_output:
            frame.visualize(self.config.name,
                            msg.timestamp,
                            pygame_display=pylot.utils.PYGAME_DISPLAY)
        segmented_stream.send(
            SegmentedFrameMessage(msg.timestamp, frame, runtime))
コード例 #5
0
class SegmentationDRNOperator(erdos.Operator):
    """ Subscribes to a camera stream, and segments frames using DRN."""
    def __init__(self,
                 camera_stream,
                 segmented_stream,
                 name,
                 flags,
                 log_file_name=None,
                 csv_file_name=None):
        camera_stream.add_callback(self.on_msg_camera_stream,
                                   [segmented_stream])
        self._name = name
        self._flags = flags
        self._logger = erdos.utils.setup_logging(name, log_file_name)
        self._csv_logger = erdos.utils.setup_csv_logging(
            name + '-csv', csv_file_name)
        arch = "drn_d_22"
        classes = 19
        self._pallete = drn.segment.CARLA_CITYSCAPE_PALETTE
        self._model = DRNSeg(arch,
                             classes,
                             pretrained_model=None,
                             pretrained=False)
        self._model.load_state_dict(
            torch.load(self._flags.segmentation_model_path))
        if torch.cuda.is_available():
            self._model = torch.nn.DataParallel(self._model).cuda()

    @staticmethod
    def connect(camera_stream):
        segmented_stream = erdos.WriteStream()
        return [segmented_stream]

    def on_msg_camera_stream(self, msg, segmented_stream):
        """Camera stream callback method.
        Invoked upon the receipt of a message on the camera stream.
        """
        self._logger.debug('@{}: {} received message'.format(
            msg.timestamp, self._name))
        start_time = time.time()
        assert msg.frame.encoding == 'BGR', 'Expects BGR frames'
        image = torch.from_numpy(msg.frame.frame.transpose(
            [2, 0, 1])).unsqueeze(0).float()
        image_var = Variable(image, requires_grad=False, volatile=True)

        final = self._model(image_var)[0]
        _, pred = torch.max(final, 1)

        pred = pred.cpu().data.numpy()[0]
        # After we apply the pallete, the image is in RGB format
        image_np = self._pallete[pred.squeeze()]

        # Get runtime in ms.
        runtime = (time.time() - start_time) * 1000
        self._csv_logger.info('{},{},"{}",{}'.format(time_epoch_ms(),
                                                     self._name, msg.timestamp,
                                                     runtime))
        frame = SegmentedFrame(image_np, 'cityscapes', msg.frame.camera_setup)
        if self._flags.visualize_segmentation_output:
            frame.visualize(self._name, msg.timestamp)
        segmented_stream.send(
            SegmentedFrameMessage(frame, msg.timestamp, runtime))
コード例 #6
0
class SegmentationDRNOperator(Op):
    def __init__(self,
                 name,
                 output_stream_name,
                 flags,
                 log_file_name=None,
                 csv_file_name=None):
        super(SegmentationDRNOperator, self).__init__(name)
        self._flags = flags
        self._logger = setup_logging(self.name, log_file_name)
        self._csv_logger = setup_csv_logging(self.name + '-csv', csv_file_name)
        self._output_stream_name = output_stream_name
        arch = "drn_d_22"
        classes = 19
        pretrained = "dependencies/data/drn_d_22_cityscapes.pth"
        self._pallete = drn.segment.CITYSCAPE_PALETTE
        # TODO(ionel): Figure out how to set GPU memory fraction.
        self._model = DRNSeg(arch,
                             classes,
                             pretrained_model=None,
                             pretrained=False)
        self._model.load_state_dict(torch.load(pretrained))
        # TODO(ionel): Automatically detect if GPU is available.
        if self._flags.segmentation_gpu:
            self._model = torch.nn.DataParallel(self._model).cuda()
        self._last_seq_num = -1

    @staticmethod
    def setup_streams(input_streams, output_stream_name):
        # Register a callback on the camera input stream.
        input_streams.filter(is_camera_stream).add_callback(
            SegmentationDRNOperator.on_msg_camera_stream)
        return [create_segmented_camera_stream(output_stream_name)]

    def on_msg_camera_stream(self, msg):
        """Camera stream callback method.
        Invoked upon the receipt of a message on the camera stream.
        """
        if self._last_seq_num + 1 != msg.timestamp.coordinates[1]:
            self._logger.error(
                'Expected msg with seq num {} but received {}'.format(
                    (self._last_seq_num + 1), msg.timestamp.coordinates[1]))
            if self._flags.fail_on_message_loss:
                assert self._last_seq_num + 1 == msg.timestamp.coordinates[1]
        self._last_seq_num = msg.timestamp.coordinates[1]

        self._logger.info('{} received frame {}'.format(
            self.name, msg.timestamp))
        start_time = time.time()
        image = bgra_to_bgr(msg.data)
        image = torch.from_numpy(image.transpose([2, 0,
                                                  1])).unsqueeze(0).float()
        image_var = Variable(image, requires_grad=False, volatile=True)

        final = self._model(image_var)[0]
        _, pred = torch.max(final, 1)

        pred = pred.cpu().data.numpy()[0]
        image_np = self._pallete[pred.squeeze()]
        # After we apply the pallete, the image is in RGB format
        image_np = rgb_to_bgr(image_np)

        if self._flags.visualize_segmentation_output:
            add_timestamp(msg.timestamp, image_np)
            cv2.imshow(self.name, image_np)
            cv2.waitKey(1)

        # Get runtime in ms.
        runtime = (time.time() - start_time) * 1000
        self._csv_logger.info('{},{},"{}",{}'.format(time_epoch_ms(),
                                                     self.name, msg.timestamp,
                                                     runtime))

        output_msg = Message((image_np, runtime), msg.timestamp)
        self.get_output_stream(self._output_stream_name).send(output_msg)

    def execute(self):
        """Operator execute entry method."""
        # Ensures that the operator runs continuously.
        self.spin()
コード例 #7
0
class SegmentationDRNOperator(Op):
    """ Subscribes to a camera stream, and segments frames using DRN."""
    def __init__(self,
                 name,
                 output_stream_name,
                 flags,
                 log_file_name=None,
                 csv_file_name=None):
        super(SegmentationDRNOperator, self).__init__(name)
        self._flags = flags
        self._logger = setup_logging(self.name, log_file_name)
        self._csv_logger = setup_csv_logging(self.name + '-csv', csv_file_name)
        self._output_stream_name = output_stream_name
        arch = "drn_d_22"
        classes = 19
        self._pallete = drn.segment.CITYSCAPE_PALETTE
        # TODO(ionel): Figure out how to set GPU memory fraction.
        self._model = DRNSeg(arch,
                             classes,
                             pretrained_model=None,
                             pretrained=False)
        self._model.load_state_dict(
            torch.load(self._flags.segmentation_drn_model_path))
        # TODO(ionel): Automatically detect if GPU is available.
        if self._flags.segmentation_gpu:
            self._model = torch.nn.DataParallel(self._model).cuda()

    @staticmethod
    def setup_streams(input_streams,
                      output_stream_name,
                      filter_stream_name=None):
        # Select camera input streams.
        camera_streams = input_streams.filter(is_camera_stream)
        if filter_stream_name:
            # Select only the camera the operator is interested in.
            camera_streams = camera_streams.filter_name(filter_stream_name)
        # Register a callback on the camera input stream.
        camera_streams.add_callback(
            SegmentationDRNOperator.on_msg_camera_stream)
        return [create_segmented_camera_stream(output_stream_name)]

    def on_msg_camera_stream(self, msg):
        """Camera stream callback method.
        Invoked upon the receipt of a message on the camera stream.
        """
        self._logger.info('{} received frame {}'.format(
            self.name, msg.timestamp))
        start_time = time.time()
        assert msg.encoding == 'BGR', 'Expects BGR frames'
        image = torch.from_numpy(msg.frame.transpose([2, 0, 1
                                                      ])).unsqueeze(0).float()
        image_var = Variable(image, requires_grad=False, volatile=True)

        final = self._model(image_var)[0]
        _, pred = torch.max(final, 1)

        pred = pred.cpu().data.numpy()[0]
        image_np = self._pallete[pred.squeeze()]
        # After we apply the pallete, the image is in RGB format
        image_np = rgb_to_bgr(image_np)

        if self._flags.visualize_segmentation_output:
            add_timestamp(msg.timestamp, image_np)
            cv2.imshow(self.name, image_np)
            cv2.waitKey(1)

        # Get runtime in ms.
        runtime = (time.time() - start_time) * 1000
        self._csv_logger.info('{},{},"{}",{}'.format(time_epoch_ms(),
                                                     self.name, msg.timestamp,
                                                     runtime))

        output_msg = SegmentedFrameMessage(image_np, runtime, msg.timestamp)
        self.get_output_stream(self._output_stream_name).send(output_msg)

    def execute(self):
        """Operator execute entry method."""
        # Ensures that the operator runs continuously.
        self.spin()