コード例 #1
0
ファイル: merge.py プロジェクト: peterkuma/ds-format
def merge(dim, *args, **opts):
    input_ = args[:-1]
    output = args[-1]
    dd = []
    for filename in input_:
        d = ds.read(filename)
        dd.append(d)
    d = ds.op.merge(dd, dim, variables=opts.get('variables'))
    ds.write(output, d)
コード例 #2
0
 def write(d, output):
     if len(d['time']) == 0:
         return
     t1 = d['time_bnds'][0, 0]
     t1 = np.round(t1 * 86400.) / 86400.
     filename = os.path.join(output,
                             '%s.nc' % aq.to_iso(t1).replace(':', ''))
     ds.write(filename, d)
     print('-> %s' % filename)
     return []
コード例 #3
0
def write(*args, **opts):
    d = {'.': {}}
    output = args[0]
    variables = args[1:]
    for var in variables:
        attrs = None
        if len(var) == 3:
            name, dims, values = var
        elif len(var) == 4:
            name, dims, values, attrs = var
        else:
            raise ValueError('Invalid variable: %s' % var)
        d[name] = np.array(values)
        d['.'][name] = attrs if attrs is not None else {}
        d['.'][name]['.dims'] = dims if isinstance(dims, list) \
         else [dims]
    if len(opts.keys()) > 0:
        d['.']['.'] = opts
    ds.write(output, d)
コード例 #4
0
def main_(input_type, output_type, input_, output, surf=None):
    d_raw = None
    d_pts = None
    d_prof = None
    d_prof_desc = None
    d_surf = None
    desc = False

    not_supported_msg = 'input or output type not supported'

    if input_type.startswith('raw:'):
        name = input_type[(input_type.index(':') + 1):]
        drv = get_driver(name)
        d_raw = ds.read(input_)
    elif input_type == 'pts':
        d_pts = ds.read(input_)
    elif input_type == 'prof':
        d_prof = ds.read(input_)
    else:
        drv = get_driver(input_type)
        #if output_type == 'prof' and hasattr(drv, 'read_prof'):
        #	d_prof = drv.read_prof(input_)
        if hasattr(drv, 'read'):
            d_raw = drv.read(input_)

    if d_pts is None and d_raw is not None and hasattr(drv, 'pts'):
        d_pts = drv.pts(d_raw)

    if d_prof is None and d_pts is not None:
        d_prof = prof(d_pts)
        d_prof_desc = prof(d_pts, desc=True)

    if d_prof is not None and surf is not None:
        drv = rstoollib.drivers.surf
        d_surf = drv.read(surf, d_prof['time'][0])
        if d_surf is not None:
            for k, v in d_surf.items():
                if k != '.':
                    d_prof[k] = d_surf[k]

    if d_prof is not None:
        postprocess(d_prof)

    if d_prof_desc is not None:
        postprocess(d_prof_desc)

    if output_type == 'prof':
        if d_prof is None:
            raise ValueError(not_supported_msg)
        d = d_prof
    elif output_type == 'prof:desc':
        if d_prof_desc is None:
            raise ValueError(not_supported_msg)
        d = d_prof_desc
    elif output_type == 'pts':
        if d_pts is None:
            raise ValueError(not_supported_msg)
        d = d_pts
    elif output_type == 'raw':
        if d_raw is None:
            raise ValueError(not_supported_msg)
        d = d_raw
    else:
        raise ValueError(not_supported_msg)

    d['.'] = d.get('.', {})
    d['.']['.'] = d['.'].get('.', {})
    d['.']['.'].update({
     'software': 'rstool ' + VERSION + \
      ' (https://github.com/peterkuma/rstool)',
     'created': aq.to_iso(aq.from_datetime(dt.datetime.utcnow())),
    })
    ds.write(output, d)
コード例 #5
0
ファイル: stats.py プロジェクト: alcf-lidar/alcf
def run(input_,
        output,
        tlim=None,
        blim=[5., 200.],
        bres=5.,
        bsd_lim=[0.001, 10.],
        bsd_log=True,
        bsd_res=0.001,
        bsd_z=8000.,
        filter=None,
        zlim=[0., 15000.],
        zres=100.,
        **kwargs):
    '''
alcf-stats -- Calculate cloud occurrence statistics.
==========

Synopsis
--------

    alcf stats <input> <output> [<options>]

Arguments
---------

- `input`: Input filename or directory.
- `output`: Output filename or directory.

Options
-------

- `blim: <value>`: Backscatter histogram limits (1e-6 m-1.sr-1). Default: `{ 5 200 }`.
- `bres: <value>`: Backscatter histogram resolution (1e-6 m-1.sr-1). Default: `10`.
- `bsd_lim: { <low> <high> }`: Backscatter standard deviation histogram limits (1e-6 m-1.sr-1). Default: `{ 0.001 10 }`.
- `bsd_log: <value>`: Enable/disable logarithmic scale of the backscatter standard deviation histogram (`true` or `false`). Default: `true`.
- `bsd_res: <value>`: Backscatter standard deviation histogram resolution (1e-6 m-1.sr-1). Default: `0.001`.
- `bsd_z: <value>`: Backscatter standard deviation histogram height (m). Default: `8000`.
- `filter: <value> | { <value> ... }`: Filter profiles by condition: `cloudy` for cloudy profiles only, `clear` for clear sky profiles only, `night` for nighttime profiles, `day` for daytime profiles, `none` for all profiles. If an array of values is supplied, all conditions must be true. For `night` and `day`, lidar profiles must contain valid longitude and latitude fields set via the `lon` and `lat` arguments of `alcf lidar` or read implicitly from raw lidar data files if available (mpl, mpl2nc). Default: `none`.
- `tlim: { <start> <end> }`: Time limits (see Time format below). Default: `none`.
- `zlim: { <low> <high> }`: Height limits (m). Default: `{ 0 15000 }`.
- `zres: <value>`: Height resolution (m). Default: `50`.

Time format
-----------

`YYYY-MM-DD[THH:MM[:SS]]`, where `YYYY` is year, `MM` is month, `DD` is day, `HH` is hour, `MM` is minute, `SS` is second. Example: `2000-01-01T00:00:00`.

Examples
--------

Calculate statistics from processed lidar data in `alcf_cl51_lidar` and store the output in `alcf_cl51_stats.nc`.

    alcf stats alcf_cl51_lidar alcf_cl51_stats.nc
	'''
    tlim_jd = parse_time(tlim) if tlim is not None else None
    state = {}
    options = {
        'tlim': tlim_jd,
        'blim': np.array(blim, dtype=np.float64) * 1e-6,
        'bres': bres * 1e-6,
        'bsd_lim': np.array(bsd_lim, dtype=np.float64) * 1e-6,
        'bsd_log': bsd_log,
        'bsd_res': bsd_res * 1e-6,
        'bsd_z': bsd_z,
        'filter': filter if type(filter) is list else [filter],
        'zlim': zlim,
        'zres': zres,
    }

    if os.path.isdir(input_):
        files = sorted(os.listdir(input_))
        for file_ in files:
            filename = os.path.join(input_, file_)
            if not os.path.isfile(filename):
                continue
            d = ds.read(filename, VARIABLES)
            print('<- %s' % filename)
            dd = stats.stream([d], state, **options)
    else:
        d = ds.read(input_, VARIABLES)
        print('<- %s' % input_)
        dd = stats.stream([d], state, **options)
    dd = stats.stream([None], state, **options)
    print('-> %s' % output)
    ds.write(output, dd[0])
コード例 #6
0
ファイル: select.py プロジェクト: peterkuma/ds-format
def select(input_, output, variables=None, sel=None):
    sel = sel[0] if sel is not None and len(sel) > 0 else None
    d = ds.read(input_, variables, sel)
    ds.write(output, d)
コード例 #7
0
ファイル: model.py プロジェクト: Henghengniceman/alcf
def run(type_, input_, output,
	point=None,
	time=None,
	track=None,
	track_override_year=None,
	track_lon_180=False,
	**kwargs
):
	"""
alcf model - extract model data at a point or along a track

Usage:

    alcf model <type> point: { <lon> <lat> } time: { <start> <end> } <input>
    	<output> [options]
    alcf model <type> track: <track> <input> <output>

Arguments:

- `type`: input data type (see Types below)
- `input`: input directory
- `output`: output directory
- `lon`: point longitude
- `lat`: point latitutde
- `start`: start time (see Time format below)
- `end`: end time (see Time format below)
- `track`: track NetCDF file (see Track below)
- `options`: see Options below

Options:

- `track_override_year: <year>`: Override year in track.
    Use if comparing observations with a model statistically. Default: `none`.
- `--track_lon_180`: expect track longitude between -180 and 180 degrees

Types:

- `amps`: Antarctic Mesoscale Prediction System (AMPS)
- `era5`: ERA5
- `jra55`: JRA-55
- `merra2`: Modern-Era Retrospective Analysis for Research and Applications,
	Version 2 (MERRA-2)
- `nzcsm`: New Zealand Convection Scale Model (NZCSM)
- `nzesm`: New Zealand Earth System Model (NZESM) (experimental)
- `um`: UK Met Office Unified Model (UM)

Time format:

"YYYY-MM-DD[THH:MM[:SS]]", where YYYY is year, MM is month, DD is day,
HH is hour, MM is minute, SS is second. Example: 2000-01-01T00:00:00.

Track:

Track file is a NetCDF file containing 1D variables `lon`, `lat`, and `time`.
`time` is time in format conforming with the NetCDF standard,
`lon` is longitude between 0 and 360 degrees and `lat` is latitude between
-90 and 90 degrees.
	"""
	time1 = None
	track1 = None
	if track is not None:
		track1 = ds.read(track)
		if track_override_year is not None:
			date = aq.to_date(track1['time'])
			date[1][:] = track_override_year
			track1['time'] = aq.from_date(date)
		if track_lon_180:
			track1['lon'] = np.where(
				track1['lon'] > 0,
				track1['lon'],
				360. + track1['lon']
			)
		time1 = track1['time'][0], track1['time'][-1]
	elif point is not None and time is not None:
		pass
	else:
		raise ValueError('Point and time or track is required')

	if time is not None:
			time1 = [None, None]
			for i in 0, 1:
				time1[i] = aq.from_iso(time[i])
				if time1[i] is None:
					raise ValueError('Invalid time format: %s' % time[i])

	# if os.path.isdir(output):
	t1, t2 = time1[0], time1[1]
	for t in np.arange(np.floor(t1 - 0.5), np.ceil(t2 - 0.5)) + 0.5:
		output_filename = os.path.join(output, '%s.nc' % \
			aq.to_iso(t).replace(':', ''))
		d = model(type_, input_, point, time=[t, t + 1.], track=track1)
		if d is not None:
			ds.write(output_filename, d)
			print('-> %s' % output_filename)
コード例 #8
0
def run(type_, input_, output,
	point=None,
	time=None,
	track=None,
	track_override_year=None,
	track_lon_180=False,
	debug=False,
	**kwargs
):
	'''
alcf-model -- Extract model data at a point or along a track.
==========

Synopsis
--------

    alcf model <type> point: { <lon> <lat> } time: { <start> <end> } <input> <output> [options]

    alcf model <type> track: <track> <input> <output>

Arguments
---------

- `type`: Input data type (see Types below).
- `input`: Input directory.
- `output`: Output directory.
- `lon`: Point longitude.
- `lat`: Point latitutde.
- `start`: Start time (see Time format below).
- `end`: End time (see Time format below).
- `track`: Track NetCDF file (see Files below).
- `options`: See Options below.

Options
-------

- `--track_lon_180`: Expect track longitude between -180 and 180 degrees.
- `track_override_year: <year>`: Override year in track. Use if comparing observations with a model statistically. Default: `none`.

Types
-----

- `amps`: Antarctic Mesoscale Prediction System (AMPS).
- `era5`: ERA5.
- `jra55`: JRA-55.
- `merra2`: Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).
- `nzcsm`: New Zealand Convection Scale Model (NZCSM).
- `nzesm`: New Zealand Earth System Model (NZESM). [Experimental]
- `um`: UK Met Office Unified Model (UM).

Time format
-----------

`YYYY-MM-DD[THH:MM[:SS]]`, where `YYYY` is year, `MM` is month, `DD` is day, `HH` is hour, `MM` is minute, `SS` is second. Example: `2000-01-01T00:00:00`.

Files
-----

The track file is a NetCDF file containing 1D variables `lon`, `lat`, and `time`. `time` is time in format conforming with the NetCDF standard, `lon` is longitude between 0 and 360 degrees and `lat` is latitude between -90 and 90 degrees.

Examples
--------

Extract MERRA-2 model data in `M2I3NVASM.5.12.4` at 45 S, 170 E between 1 and 2 January 2020 and store the output in the directory `alcf_merra2_model`.

    alcf model merra2 point: { -45.0 170.0 } time: { 2020-01-01 2020-01-02 } M2I3NVASM.5.12.4 alcf_merra2_model
	'''
	time1 = None
	track1 = None
	if track is not None:
		track1 = ds.read(track)
		if track_override_year is not None:
			date = aq.to_date(track1['time'])
			date[1][:] = track_override_year
			track1['time'] = aq.from_date(date)
		if track_lon_180:
			track1['lon'] = np.where(
				track1['lon'] > 0,
				track1['lon'],
				360. + track1['lon']
			)
		time1 = track1['time'][0], track1['time'][-1]
	elif point is not None and time is not None:
		pass
	else:
		raise ValueError('Point and time or track is required')

	if time is not None:
			time1 = [None, None]
			for i in 0, 1:
				time1[i] = aq.from_iso(time[i])
				if time1[i] is None:
					raise ValueError('Invalid time format: %s' % time[i])

	# if os.path.isdir(output):
	t1, t2 = time1[0], time1[1]
	for t in np.arange(np.floor(t1 - 0.5), np.ceil(t2 - 0.5)) + 0.5:
		output_filename = os.path.join(output, '%s.nc' % \
			aq.to_iso(t).replace(':', ''))
		d = model(type_, input_, point, time=[t, t + 1.],
			track=track1, debug=debug)
		if d is not None:
			ds.write(output_filename, d)
			print('-> %s' % output_filename)