コード例 #1
0
def normal_cdfs_visualization():
    xs = [x / 10.0 for x in range(-50, 50)]
    plt.plot(xs, [ds_probability.normal_cdf(x, sigma=1) for x in xs],
             '-',
             label='mu=0-sigma=1')
    plt.plot(xs, [ds_probability.normal_cdf(x, sigma=2) for x in xs],
             '--',
             label='mu=0-sigma=2')
    plt.plot(xs, [ds_probability.normal_cdf(x, sigma=0.5) for x in xs],
             ':',
             label='mu=0-sigma=0.5')
    plt.plot(xs, [ds_probability.normal_cdf(x, mu=-1) for x in xs],
             '-.',
             label='mu=-1-sigma=1')
    plt.legend()
    plt.title('Various Normals cdfs')
    plt.show()
コード例 #2
0
def compare_binomial_dist_to_normal_approx(p, n, nb_points):
    data = [ds_probability.binomial(n, p) for _ in range(nb_points)]
    #showing actual binomial samples on bar chart
    histogram = Counter(data)
    plt.bar([x - 0.4 for x in histogram.keys()],
            [v / nb_points for v in histogram.values()],
            0.8,
            color='0.7')

    mu_px = p * n
    sigma_px = math.sqrt(n * p * (1 - p))

    #line chart that shows the normal approximation of the binomial variable
    xs = range(min(data), max(data) + 1)
    ys = [
        ds_probability.normal_cdf(i + 0.5, mu_px, sigma_px) -
        ds_probability.normal_cdf(i - 0.5, mu_px, sigma_px) for i in xs
    ]

    plt.plot(xs, ys)
    plt.title('Binomial Dist vs Normal approximation')
    plt.show()
コード例 #3
0
def normal_probability_between(lo, hi, mu=0, sigma=1):
    return ds_probability.normal_cdf(
        hi, mu, sigma) - ds_probability.normal_cdf(lo, mu, sigma)
コード例 #4
0
def normal_probability_above(lo, mu=0, sigma=1):
    return 1 - ds_probability.normal_cdf(lo)
コード例 #5
0
def normal_probability_below(x, mu=0, sigma=1):
    return ds_probability.normal_cdf(x)