metrics_names = [ m.__name__ if not isinstance(m, str) else m for m in metrics ] return None, \ dict(zip(metrics_names, test_scores)), \ None if __name__ == '__main__': grid_search = False if grid_search: run_grid_search(experimentclass=DTSExperiment, parameters=yaml.load( open(os.path.join(config['config'], 'static.yaml'))), db_name=config['db'], ex_name='static+grid_search', f_main=main, f_config=ex_config, f_metrics=log_metrics, cmd_args=vars(args), observer_type='mongodb') else: run_single_experiment(experimentclass=DTSExperiment, db_name=config['db'], ex_name='static', f_main=main, f_config=ex_config, f_metrics=log_metrics, cmd_args=vars(args), observer_type='mongodb')
fn_plot=fn_plot) else: test_scores = ffnn.evaluate([X_test, y_test], fn_inverse=fn_inverse_test, fn_plot=fn_plot) metrics_names = [ m.__name__ if not isinstance(m, str) else m for m in model.metrics ] return dict(zip(metrics_names, val_scores)), \ dict(zip(metrics_names, test_scores)), \ model_filepath if __name__ == '__main__': if args.grid_search: run_grid_search(experimentclass=DTSExperiment, db_name=config['db'], ex_name='ffnn_grid_search', f_main=main, f_metrics=log_metrics, f_config=args.add_config, observer_type=args.observer) else: run_single_experiment(experimentclass=DTSExperiment, db_name=config['db'], ex_name='ffnn', f_main=main, f_config=args.add_config, f_metrics=log_metrics, observer_type=args.observer)