dist = distancefunc(name="manhattan") windowtype="itakura" figure_number = 1 window, distance, path = dtwpy.dtw(query, template, dist=dist, windowtype=windowtype, windowsize=50,pattern="symmetric1", normalized=False,dist_only=False, cost=True) T = ii - P CC = C[T] L = str(ii) pltt.plotting(query, template, e, f, path,figure_number,L,CC) print('Column '+L+' plotted') a = np.arange(0,3120,1) b = np.arange(0,3120,1) c = [] for i in a: c.append((a[i],b[i]))
dist=dist, windowtype=windowtype, windowsize=1500, pattern="symmetric1", normalized=False, dist_only=False, cost=True) CC = C[ii] L = str(ii) dis = distance Dis = str(dis) pltt.plotting(query, template, e, f, path, figure_number, L, CC) #Uncomment this if you want to see the alignment plotted Diss.append(Dis) plt.figure(3) plt.plot(x, y1, 'b--', label='Original amplitude normal distribution') plt.plot(x, y2, 'r--', label='Higher amplitude normal distribution') plt.plot( x3, y3, 'g--', label='Original amplitude normal distribution with shifted mean(+200)') #plt.plot(x4,y4,'c--',label='Original amplitude normal distribution with shifted mean(-400)') #plt.plot(x5,y5,'m--',label='Original amplitude normal distribution with shifted mean(-100)') #plt.plot(x,y6,'y--',label='Lower amplitude normal distribution') plt.plot(