def callback(self, msg):
        detect_msg = BoolStamped()
        detect_msg.data = True
        self.pub_detected.publish(detect_msg)
        tag_infos = []

        # Load tag detections message
        for detection in msg.detections:

            # ------ start tag info processing

            new_info = TagInfo()
            new_info.id = int(detection.id)
            id_info = self.tags_dict[new_info.id]
            if new_info.id == 1:
                self.turnright = True
                self.turnleft = False
                self.turnaround = False
                #print "---------Tag 1---------Turn Right-----------"
            elif new_info.id == 2:
                self.turnright = False
                self.turnleft = True
                self.turnaround = False
                #print "---------Tag 2---------Turn LEFT-----------"
            elif new_info.id == 3:
                self.turnright = False
                self.turnleft = False
                self.turnaround = True
                print "---------Tag 3---------Turn around-----------"
            # Check yaml file to fill in ID-specific information
            new_info.tag_type = self.sign_types[id_info['tag_type']]
            if new_info.tag_type == self.info.S_NAME:
                new_info.street_name = id_info['street_name']
            elif new_info.tag_type == self.info.SIGN:
                new_info.traffic_sign_type = self.traffic_sign_types[
                    id_info['traffic_sign_type']]
            elif new_info.tag_type == self.info.VEHICLE:
                new_info.vehicle_name = id_info['vehicle_name']

            # TODO: Implement location more than just a float like it is now.
            # location is now 0.0 if no location is set which is probably not that smart
            if self.loc == 226:
                l = (id_info['location_226'])
                if l is not None:
                    new_info.location = l
            elif self.loc == 316:
                l = (id_info['location_316'])
                if l is not None:
                    new_info.location = l

            tag_infos.append(new_info)
            # --- end tag info processing

            # Define the transforms
            veh_t_camxout = tr.translation_matrix(
                (self.camera_x, self.camera_y, self.camera_z))
            veh_R_camxout = tr.euler_matrix(0, self.camera_theta * np.pi / 180,
                                            0, 'rxyz')
            veh_T_camxout = tr.concatenate_matrices(
                veh_t_camxout,
                veh_R_camxout)  # 4x4 Homogeneous Transform Matrix

            camxout_T_camzout = tr.euler_matrix(-np.pi / 2, 0, -np.pi / 2,
                                                'rzyx')
            veh_T_camzout = tr.concatenate_matrices(veh_T_camxout,
                                                    camxout_T_camzout)

            tagzout_T_tagxout = tr.euler_matrix(-np.pi / 2, 0, np.pi / 2,
                                                'rxyz')

            #Load translation
            trans = detection.pose.pose.position
            rot = detection.pose.pose.orientation

            camzout_t_tagzout = tr.translation_matrix(
                (trans.x * self.scale_x, trans.y * self.scale_y,
                 trans.z * self.scale_z))
            camzout_R_tagzout = tr.quaternion_matrix(
                (rot.x, rot.y, rot.z, rot.w))
            camzout_T_tagzout = tr.concatenate_matrices(
                camzout_t_tagzout, camzout_R_tagzout)

            veh_T_tagxout = tr.concatenate_matrices(veh_T_camzout,
                                                    camzout_T_tagzout,
                                                    tagzout_T_tagxout)

            # Overwrite transformed value
            (trans.x, trans.y,
             trans.z) = tr.translation_from_matrix(veh_T_tagxout)
            (rot.x, rot.y, rot.z,
             rot.w) = tr.quaternion_from_matrix(veh_T_tagxout)

            detection.pose.pose.position = trans
            detection.pose.pose.orientation = rot

        new_tag_data = AprilTagsWithInfos()
        new_tag_data.detections = msg.detections
        new_tag_data.infos = tag_infos
        # Publish Message
        self.pub_postPros.publish(new_tag_data)
コード例 #2
0
    def callback(self, msg):

        tag_infos = []

        # Load tag detections message
        for detection in msg.detections:

            # ------ start tag info processing

            new_info = TagInfo()
            new_info.id = int(detection.id)
            id_info = self.tags_dict[new_info.id]
            
            # Check yaml file to fill in ID-specific information
            new_info.tag_type = self.sign_types[id_info['tag_type']]
            if new_info.tag_type == self.info.S_NAME:
                new_info.street_name = id_info['street_name']
            elif new_info.tag_type == self.info.SIGN:
                new_info.traffic_sign_type = self.traffic_sign_types[id_info['traffic_sign_type']]
            elif new_info.tag_type == self.info.VEHICLE:
                new_info.vehicle_name = id_info['vehicle_name']
            
            # TODO: Implement location more than just a float like it is now.
            # location is now 0.0 if no location is set which is probably not that smart
            if self.loc == 226:
                l = (id_info['location_226'])
                if l is not None:
                    new_info.location = l
            elif self.loc == 316:
                l = (id_info['location_316'])
                if l is not None:
                    new_info.location = l
            
            tag_infos.append(new_info)
            # --- end tag info processing


            # Define the transforms
            veh_t_camxout = tr.translation_matrix((self.camera_x, self.camera_y, self.camera_z))
            veh_R_camxout = tr.euler_matrix(0, self.camera_theta*np.pi/180, 0, 'rxyz')
            veh_T_camxout = tr.concatenate_matrices(veh_t_camxout, veh_R_camxout)   # 4x4 Homogeneous Transform Matrix

            camxout_T_camzout = tr.euler_matrix(-np.pi/2,0,-np.pi/2,'rzyx')
            veh_T_camzout = tr.concatenate_matrices(veh_T_camxout, camxout_T_camzout)

            tagzout_T_tagxout = tr.euler_matrix(-np.pi/2, 0, np.pi/2, 'rxyz')

            #Load translation
            trans = detection.pose.pose.position
            rot = detection.pose.pose.orientation

            camzout_t_tagzout = tr.translation_matrix((trans.x*self.scale_x, trans.y*self.scale_y, trans.z*self.scale_z))
            camzout_R_tagzout = tr.quaternion_matrix((rot.x, rot.y, rot.z, rot.w))
            camzout_T_tagzout = tr.concatenate_matrices(camzout_t_tagzout, camzout_R_tagzout)

            veh_T_tagxout = tr.concatenate_matrices(veh_T_camzout, camzout_T_tagzout, tagzout_T_tagxout)

            # Overwrite transformed value
            (trans.x, trans.y, trans.z) = tr.translation_from_matrix(veh_T_tagxout)
            (rot.x, rot.y, rot.z, rot.w) = tr.quaternion_from_matrix(veh_T_tagxout)

            detection.pose.pose.position = trans
            detection.pose.pose.orientation = rot

        new_tag_data = AprilTagsWithInfos()
        new_tag_data.detections = msg.detections
        new_tag_data.infos = tag_infos
        # Publish Message
        self.pub_postPros.publish(new_tag_data)
コード例 #3
0
    def callback(self, msg):

        tag_infos = []

        new_tag_data = AprilTagsWithInfos()

        # Load tag detections message
        for detection in msg.detections:

            # ------ start tag info processing

            new_info = TagInfo()
            #Can use id 1 as long as no bundles are used
            new_info.id = int(detection.id[0])
            id_info = self.tags_dict[new_info.id]

            # Check yaml file to fill in ID-specific information
            new_info.tag_type = self.sign_types[id_info['tag_type']]
            if new_info.tag_type == self.info.S_NAME:
                new_info.street_name = id_info['street_name']
            elif new_info.tag_type == self.info.SIGN:
                new_info.traffic_sign_type = self.traffic_sign_types[
                    id_info['traffic_sign_type']]

                # publish for FSM
                # parking apriltag event
                msg_parking = BoolStamped()
                msg_parking.header.stamp = rospy.Time(0)
                if new_info.traffic_sign_type == TagInfo.PARKING:
                    msg_parking.data = True
                else:
                    msg_parking.data = False
                self.pub_postPros_parking.publish(msg_parking)

                # intersection apriltag event
                msg_intersection = BoolStamped()
                msg_intersection.header.stamp = rospy.Time(0)
                if (new_info.traffic_sign_type == TagInfo.FOUR_WAY) or (
                        new_info.traffic_sign_type == TagInfo.RIGHT_T_INTERSECT
                ) or (new_info.traffic_sign_type == TagInfo.LEFT_T_INTERSECT
                      ) or (new_info.traffic_sign_type
                            == TagInfo.T_INTERSECTION):
                    msg_intersection.data = True
                else:
                    msg_intersection.data = False
                self.pub_postPros_intersection.publish(msg_intersection)

            elif new_info.tag_type == self.info.VEHICLE:
                new_info.vehicle_name = id_info['vehicle_name']

            # TODO: Implement location more than just a float like it is now.
            # location is now 0.0 if no location is set which is probably not that smart
            if self.loc == 226:
                l = (id_info['location_226'])
                if l is not None:
                    new_info.location = l
            elif self.loc == 316:
                l = (id_info['location_316'])
                if l is not None:
                    new_info.location = l

            tag_infos.append(new_info)
            # --- end tag info processing

            # Define the transforms
            veh_t_camxout = tr.translation_matrix(
                (self.camera_x, self.camera_y, self.camera_z))
            veh_R_camxout = tr.euler_matrix(0, self.camera_theta * np.pi / 180,
                                            0, 'rxyz')
            veh_T_camxout = tr.concatenate_matrices(
                veh_t_camxout,
                veh_R_camxout)  # 4x4 Homogeneous Transform Matrix

            camxout_T_camzout = tr.euler_matrix(-np.pi / 2, 0, -np.pi / 2,
                                                'rzyx')
            veh_T_camzout = tr.concatenate_matrices(veh_T_camxout,
                                                    camxout_T_camzout)

            tagzout_T_tagxout = tr.euler_matrix(-np.pi / 2, 0, np.pi / 2,
                                                'rxyz')

            #Load translation
            trans = detection.pose.pose.pose.position
            rot = detection.pose.pose.pose.orientation
            header = detection.pose.header

            camzout_t_tagzout = tr.translation_matrix(
                (trans.x * self.scale_x, trans.y * self.scale_y,
                 trans.z * self.scale_z))
            camzout_R_tagzout = tr.quaternion_matrix(
                (rot.x, rot.y, rot.z, rot.w))
            camzout_T_tagzout = tr.concatenate_matrices(
                camzout_t_tagzout, camzout_R_tagzout)

            veh_T_tagxout = tr.concatenate_matrices(veh_T_camzout,
                                                    camzout_T_tagzout,
                                                    tagzout_T_tagxout)

            # Overwrite transformed value
            (trans.x, trans.y,
             trans.z) = tr.translation_from_matrix(veh_T_tagxout)
            (rot.x, rot.y, rot.z,
             rot.w) = tr.quaternion_from_matrix(veh_T_tagxout)

            new_tag_data.detections.append(
                AprilTagDetection(int(detection.id[0]),
                                  float(detection.size[0]),
                                  PoseStamped(header, Pose(trans, rot))))

        new_tag_data.infos = tag_infos
        # Publish Message
        self.pub_postPros.publish(new_tag_data)
コード例 #4
0
    def callback(self, msg):
        """ """
        # Load tag detections message
        tag_infos = []

        for detection in msg.detections:
            new_info = TagInfo()
            #new_location_info = Vector2D()
            new_info.id = int(detection.id)
            id_info = self.tags_dict[new_info.id]

            # Check yaml file to fill in ID-specific information
            new_info.tag_type = self.sign_types[id_info['tag_type']]
            if new_info.tag_type == self.info.S_NAME:
                new_info.street_name = id_info['street_name']
            elif new_info.tag_type == self.info.SIGN:
                new_info.traffic_sign_type = self.traffic_sign_types[
                    id_info['traffic_sign_type']]
            elif new_info.tag_type == self.info.VEHICLE:
                new_info.vehicle_name = id_info['vehicle_name']

            # TODO: Implement location more than just a float like it is now.
            # location is now 0.0 if no location is set which is probably not that smart
            if self.loc == 226:
                l = (id_info['location_226'])
                if l is not None:
                    new_info.location = l
            elif self.loc == 316:
                l = (id_info['location_316'])
                if l is not None:
                    new_info.location = l

            #######################
            # Localization stuff
            #######################
            """
            camera_x     = 0.05  # x distance from wheel center
            camera_y     = 0.0   #
            camera_z     = 0.1   # height of camera from ground
            camera_theta = 15    # degree of rotation arround y axis
            """
            camera_x = rospy.get_param("~camera_x")
            camera_y = rospy.get_param("~camera_y")
            camera_z = rospy.get_param("~camera_z")
            camera_theta = rospy.get_param("~camera_theta")

            #Load translation
            x = detection.transform.translation.x
            y = detection.transform.translation.y
            z = detection.transform.translation.z

            t_tc_Fc = k.Vector(
                x, y, z
            )  # translation tags(t) w/ camera(c) expressed in camera frame (Fc)

            #Load rotation
            x = detection.transform.rotation.x
            y = detection.transform.rotation.y
            z = detection.transform.rotation.z
            w = detection.transform.rotation.w
            e = k.Vector(x, y, z)
            Q_Ftag_Fold = k.Quaternion(e, w)

            # New tag orientation reference (zero when facing camera) w/ to old tag ref used by the lib
            C_Ft_Ftag = k.RotationMatrix(
                np.matrix([[0, 0, -1], [-1, 0, 0], [0, 1, 0]]))
            Q_Ft_Ftag = C_Ft_Ftag.toQuaternion()

            # Rotation of old ref frame used by the lib w/ to camera frame
            C_Fold_Fc = k.RotationMatrix(
                np.matrix([[0, -1, 0], [0, 0, -1], [1, 0, 0]]))
            Q_Fold_Fc = C_Fold_Fc.toQuaternion()

            # Camera localization
            t_cv_Fv = k.Vector(
                camera_x, camera_y, camera_z
            )  # translation of camera w/ vehicle origin in vehicle frame
            C_Fc_Fv = k.euler2RotationMatrix(
                0, camera_theta,
                0)  # Rotation   of camera frame w/ vehicle frame
            Q_Fc_Fv = C_Fc_Fv.toQuaternion()

            # Compute tag orientation in vehicle frame
            Q_Ft_Fv = Q_Fc_Fv * Q_Fold_Fc * Q_Ftag_Fold * Q_Ft_Ftag

            # Compute position of tag in vehicle frame expressed in vehicle frame
            C_Fv_Fc = -C_Fc_Fv  # inverse transform
            t_tc_Fv = C_Fv_Fc * t_tc_Fc
            t_tv_Fv = t_tc_Fv + t_cv_Fv

            # Overwrite transformed value
            detection.transform.translation.x = t_tv_Fv.x
            detection.transform.translation.y = t_tv_Fv.y
            detection.transform.translation.z = t_tv_Fv.z
            detection.transform.rotation.x = Q_Ft_Fv.e.x
            detection.transform.rotation.y = Q_Ft_Fv.e.y
            detection.transform.rotation.z = Q_Ft_Fv.e.z
            detection.transform.rotation.w = Q_Ft_Fv.n

            # Debug Print
            #A_read       = Q_Ftag_Fold.toAngleAxis()
            #A_Ft_Fv      = Q_Ft_Fv.toAngleAxis()
            #print 'Rotation Read'
            #A_read()
            #print 'Rotation in Vehicle Frame'
            #A_Ft_Fv()

            tag_infos.append(new_info)

        new_tag_data = AprilTags()
        new_tag_data.detections = msg.detections
        new_tag_data.infos = tag_infos

        # Publish Message
        self.pub_postPros.publish(new_tag_data)