コード例 #1
0
    def processImage(self, image_msg):

        if not self.active:
            return

        now = rospy.Time.now()
        if now - self.last_stamp < self.publish_duration:
            return
        else:
            self.last_stamp = now

        vehicle_detected_msg_out = BoolStamped()
        vehicle_corners_msg_out = VehicleCorners()
        try:
            image_cv = self.bridge.compressed_imgmsg_to_cv2(image_msg, "bgr8")
        except CvBridgeError as e:
            print e

        start = rospy.Time.now()
        params = cv2.SimpleBlobDetector_Params()
        params.minArea = self.blobdetector_min_area
        params.minDistBetweenBlobs = self.blobdetector_min_dist_between_blobs
        simple_blob_detector = cv2.SimpleBlobDetector_create(params)
        (detection,
         corners) = cv2.findCirclesGrid(image_cv,
                                        self.circlepattern_dims,
                                        flags=cv2.CALIB_CB_SYMMETRIC_GRID,
                                        blobDetector=simple_blob_detector)

        # print(corners)

        vehicle_detected_msg_out.data = detection
        self.pub_detection.publish(vehicle_detected_msg_out)
        if detection:
            # print(corners)
            points_list = []
            for point in corners:
                corner = Point32()
                # print(point[0])
                corner.x = point[0, 0]
                # print(point[0,1])
                corner.y = point[0, 1]
                corner.z = 0
                points_list.append(corner)
            vehicle_corners_msg_out.header.stamp = rospy.Time.now()
            vehicle_corners_msg_out.corners = points_list
            vehicle_corners_msg_out.detection.data = detection
            vehicle_corners_msg_out.H = self.circlepattern_dims[1]
            vehicle_corners_msg_out.W = self.circlepattern_dims[0]
            self.pub_corners.publish(vehicle_corners_msg_out)
        elapsed_time = (rospy.Time.now() - start).to_sec()
        self.pub_time_elapsed.publish(elapsed_time)
        if self.publish_circles:
            cv2.drawChessboardCorners(image_cv, self.circlepattern_dims,
                                      corners, detection)
            image_msg_out = self.bridge.cv2_to_imgmsg(image_cv, "bgr8")
            self.pub_circlepattern_image.publish(image_msg_out)
コード例 #2
0
    def cb_image(self, image_msg):
        """
        Callback for processing a image which potentially contains a back pattern. Processes the image only if
        sufficient time has passed since processing the previous image (relative to the chosen processing frequency).

        The pattern detection is performed using OpenCV's `findCirclesGrid <https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=solvepnp#findcirclesgrid>`_ function.

        Args:
            image_msg (:obj:`sensor_msgs.msg.CompressedImage`): Input image

        """
        now = rospy.Time.now()
        if now - self.last_stamp < self.publish_duration:
            return
        else:
            self.last_stamp = now
        
        vehicle_centers_msg_out = VehicleCorners()
        detection_flag_msg_out = BoolStamped()
        image_cv = self.bridge.compressed_imgmsg_to_cv2(image_msg, "bgr8")

        (detection, centers) = cv2.findCirclesGrid(image_cv,
                                                   patternSize=tuple(self.circlepattern_dims.value),
                                                   flags=cv2.CALIB_CB_SYMMETRIC_GRID,
                                                   blobDetector=self.simple_blob_detector)

        # if the pattern is detected, cv2.findCirclesGrid returns a non-zero result, otherwise it returns 0
        # vehicle_detected_msg_out.data = detection > 0
        # self.pub_detection.publish(vehicle_detected_msg_out)

        vehicle_centers_msg_out.header = image_msg.header
        vehicle_centers_msg_out.detection.data = detection > 0
        detection_flag_msg_out.header = image_msg.header
        detection_flag_msg_out.data = detection > 0

        # if the detection is successful add the information about it,
        # otherwise publish a message saying that it was unsuccessful
        if detection > 0:
            points_list = []
            for point in centers:
                center = Point32()
                center.x = point[0, 0]
                center.y = point[0, 1]
                center.z = 0
                points_list.append(center)
            vehicle_centers_msg_out.corners = points_list
            vehicle_centers_msg_out.H = self.circlepattern_dims.value[1]
            vehicle_centers_msg_out.W = self.circlepattern_dims.value[0]

        self.pub_centers.publish(vehicle_centers_msg_out)
        self.pub_detection_flag.publish(detection_flag_msg_out)
        if self.pub_circlepattern_image.get_num_connections() > 0:
            cv2.drawChessboardCorners(image_cv,
                                      tuple(self.circlepattern_dims.value), centers, detection)
            image_msg_out = self.bridge.cv2_to_compressed_imgmsg(image_cv)
            self.pub_circlepattern_image.publish(image_msg_out)
コード例 #3
0
    def processImage(self, image_msg):
        if not self.active:
            return
        now = rospy.Time.now()
        if now - self.last_stamp < self.publish_duration:
            return
        else:
            self.last_stamp = now

        vehicle_detected_msg_out = BoolStamped()
        vehicle_corners_msg_out = VehicleCorners()
        try:
            image_cv = self.bridge.compressed_imgmsg_to_cv2(image_msg, "bgr8")
        except CvBridgeError as e:
            print e

        start = rospy.Time.now()
        params = cv2.SimpleBlobDetector_Params()
        # params.filterByArea = True
        params.minArea = self.blobdetector_min_area
        # params.minThreshold = 100
        # params.maxThreshold = 255
        # params.filterByCircularity = True
        # params.minCircularity = 0.4
        # params.filterByInertia = True
        # params.minInertiaRatio = 0.6
        # params.filterByConvexity = True
        # params.minConvexity = 0.8
        params.minDistBetweenBlobs = self.blobdetector_min_dist_between_blobs
        simple_blob_detector = cv2.SimpleBlobDetector_create(params)

        stay_detected = False
        (detection,
         corners) = cv2.findCirclesGrid(image_cv,
                                        self.circlepattern_dims,
                                        flags=cv2.CALIB_CB_SYMMETRIC_GRID,
                                        blobDetector=simple_blob_detector)

        # print(detection)

        # if not stay_detected:
        #     keypoints = simple_blob_detector.detect(image_cv)
        #     im_with_keypoints = cv2.drawKeypoints(image_cv, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
        #     self.pub_circlepattern_image.publish(self.bridge.cv2_to_imgmsg(im_with_keypoints, "bgr8"))

        vehicle_detected_msg_out.data = detection
        self.pub_detection.publish(vehicle_detected_msg_out)
        if detection:
            # print(corners)
            points_list = []
            for point in corners:
                corner = Point32()
                # print(point[0])
                corner.x = point[0, 0]
                # print(point[0,1])
                corner.y = point[0, 1]
                corner.z = 0
                points_list.append(corner)
            vehicle_corners_msg_out.header.stamp = rospy.Time.now()
            vehicle_corners_msg_out.corners = points_list
            vehicle_corners_msg_out.detection.data = detection
            vehicle_corners_msg_out.H = self.circlepattern_dims[1]
            vehicle_corners_msg_out.W = self.circlepattern_dims[0]
            self.pub_corners.publish(vehicle_corners_msg_out)

        if detection and self.publish_circles:
            stay_detected = True
            cv2.drawChessboardCorners(image_cv, self.circlepattern_dims,
                                      corners, detection)
            image_msg_out = self.bridge.cv2_to_imgmsg(image_cv, "bgr8")
            self.pub_circlepattern_image.publish(image_msg_out)

        elapsed_time = (rospy.Time.now() - start).to_sec()
        self.pub_time_elapsed.publish(elapsed_time)
コード例 #4
0
    def processImage(self, image_msg):

        now = rospy.Time.now()
        if now - self.last_stamp < self.publish_duration:
            return
        else:
            self.last_stamp = now

        self.loginfo("Processing image")

        vehicle_detected_msg_out = BoolStamped()
        vehicle_corners_msg_out = VehicleCorners()

        try:
            image_cv = self.bridge.compressed_imgmsg_to_cv2(image_msg, "bgr8")
        except CvBridgeError as e:
            print(e)

        # TODO we are only finding a 3x1 circle grid
        start = rospy.Time.now()
        params = cv2.SimpleBlobDetector_Params()
        params.minArea = self.blobdetector_min_area
        params.minDistBetweenBlobs = self.blobdetector_min_dist_between_blobs
        simple_blob_detector = cv2.SimpleBlobDetector_create(params)
        (detection,
         corners) = cv2.findCirclesGrid(image_cv, (3, 1),
                                        flags=cv2.CALIB_CB_SYMMETRIC_GRID,
                                        blobDetector=simple_blob_detector)

        vehicle_detected_msg_out.data = detection
        # if(vehicle_detected_msg_out.data is not False):
        #     self.loginfo(">>>>>>>>>>>>>>>>>>>>>Published on detection")
        self.pub_detection.publish(vehicle_detected_msg_out)
        if detection:
            self.logwarn("Detected vehicle")
            # print(corners)
            points_list = []
            for point in corners:
                corner = Point32()
                # print(point[0])
                corner.x = point[0, 0]
                # print(point[0,1])
                corner.y = point[0, 1]
                corner.z = 0
                points_list.append(corner)
            vehicle_corners_msg_out.header.stamp = rospy.Time.now()
            vehicle_corners_msg_out.corners = points_list
            vehicle_corners_msg_out.detection.data = detection
            vehicle_corners_msg_out.H = self.circlepattern_dims[1]
            vehicle_corners_msg_out.W = self.circlepattern_dims[0]
            self.pub_corners.publish(vehicle_corners_msg_out)

        # If we changed detection state
        if (self.vehicle_detected != detection):
            state = stop_fsm_state if detection else follow_fsm_state
            # Set state to vehicle detected -> Stop
            request = SetFSMStateRequest(state)
            self.loginfo("Detection state to send: " + str(state))
            try:
                self.setFSMState(request)
            except rospy.ServiceException as exc:
                rospy.logwarn("FSM service did not process changeState stop:" +
                              str(exc))
            except Exception as e:
                rospy.logwarn(
                    "FSM service did not process changeState, exception: " +
                    str(e))
            except:
                rospy.logwarn("FSM service did not process changeState")

        self.vehicle_detected = detection

        elapsed_time = (rospy.Time.now() - start).to_sec()
        self.pub_time_elapsed.publish(elapsed_time)
        if self.publish_circles:
            cv2.drawChessboardCorners(image_cv, self.circlepattern_dims,
                                      corners, detection)
            image_msg_out = self.bridge.cv2_to_imgmsg(image_cv, "bgr8")
            self.pub_circlepattern_image.publish(image_msg_out)

        return