def store(self): now = datetime.datetime.now() total = 0 for site in self.sites: v = getattr(self, site) m = v() num = m.replace("$", "") total += Decimal(num) site_list = dumper.load(site, silent=True, path=BASE_DIR) or [] site_list.append({'site': site, 'datetime': now, 'total': num}) dumper.dump(site_list, site, path=BASE_DIR) total_list = dumper.load('total', silent=True, path=BASE_DIR) or [] total_list.append({'site': total, 'datetime': now, 'total': total}) dumper.dump(total_list, "total", path=BASE_DIR) print "store file {}".format(now)
def main(): parser = argparse.ArgumentParser(description='Formatter for C language') parser.add_argument('--train', dest='train', type=str, help='Train classifier on that folder') parser.add_argument('--classifier_filename', dest='classifier_filename', type=str, default='linux_classificators.data', help='In which file save classifier') parser.add_argument('--clftab', dest='clftab', type=str, choices=['solving_tree', 'kneighbors', 'svm', 'random_forest'], default='random_forest', help='Type of classifier for tabs') parser.add_argument('--clfspace', dest='clfspace', type=str, choices=['solving_tree', 'kneighbors', 'svm', 'random_forest'], default='random_forest', help='Type of classifier for spaces') parser.add_argument('--clfnl', dest='clfnewline', type=str, choices=['solving_tree', 'kneighbors', 'svm', 'random_forest'], default='random_forest', help='Type of classifier for newlines') parser.add_argument('--load_clfs', dest='clfs', type=str, help='Load previously saved classifiers') parser.add_argument('file', help='File to process', nargs='?') args = parser.parse_args() clfs = None if args.train is not None: clfs = learning.generate_classifiers(args) dumper.dump(clfs, learning.vectorizer, args.classifier_filename) elif args.clfs is not None: data = dumper.load(args.clfs) clfs = data['classifiers'] learning.vectorizer = data['vectorizer'] if args.file is not None: print("Processing file...") data = learning.format_file(args.file, clfs['newline'], clfs['space'], clfs['tab']) print(data)
def graph_site(self, site): x, y, data = [], [], [] site_list = dumper.load(site, path=BASE_DIR) y_old = float(site_list[0]["total"]) for i in site_list: t = float(i["total"]) - y_old y_old = float(i["total"]) if t != 0: x.append(i['datetime']) y.append(t) data.append(go.Scatter(x=x, y=y, name=site)) l = dict(layout={'title': site}, data=data) print(site, py.plot(l, filename=site, fileopt="overwrite", auto_open=False))
def main(): nimilista = {} nimilista = dumper.load() mainwindow = tkinter.Tk() mainwindow.wm_title('Asiakashallintaohjelmisto') menubar = tkinter.Menu(mainwindow) #mainwindow.iconbitmap(default='transparent.ico') keksi uusi ikoni asiakasGUI = AsiakasGUI(nimilista,mainwindow) menubar.add_command(label='Lataa',command=lambda: asiakasGUI.newlistbox(1)) menubar.add_command(label='Tallenna',command=lambda: asiakasGUI.newlistbox(2)) mainwindow.protocol("WM_DELETE_WINDOW",asiakasGUI.eventhandler) mainwindow.config(menu=menubar) mainwindow.mainloop()
def newlistbox(self,choice): if choice == 1: dumper.dump(self.nimilista) self.nimilista = {} a = tkinter.simpledialog.askstring('Anna etsittävän tiedoston nimi', 'Tiedoston nimi:') self.nimilista = dumper.specificload(a) if self.nimilista == {}: tkinter.messagebox.showinfo('File not found','Specific file not found') self.nimilista = dumper.load() self.listbox.delete(0,'end') for i in self.nimilista: self.listbox.insert('end',i) if choice == 2: a = tkinter.simpledialog.askstring('Anna tallennettavan tiedoston nimi','Tiedoston nimi: ') dumper.specificdump(self.nimilista,a)
def graph_total(self): data = dumper.load("total", path=BASE_DIR) days = [x["datetime"] for x in data] values = ["%s" % x["total"] for x in data] g = [go.Scatter(x=days, y=values)] py.plot(dict(data=g, layout={ "title": "Growth", 'xaxis': { 'title': "Year days" }, 'yaxis': { 'title': "Money" } }), filename="nekototal", fileopt="overwrite", auto_open=False)
def graph(self): data = [] for site in self.sites: site_list = dumper.load(site, path=BASE_DIR) x = [i['datetime'] for i in site_list] y = [i["total"] for i in site_list] data.append(go.Scatter(x=x, y=y, name=site)) data.append( go.Scatter(y=[self.limit for i in range(0, len(x))], x=x, name="limit")) opts = dict(data=data, layout={ 'title': 'Total earns', 'xaxis': { 'title': "Timeline" }, 'yaxis': { 'title': "Money" } }) py.plot(opts, filename="neko", fileopt="overwrite", auto_open=False)