コード例 #1
0
# <codecell>
from dune.ufl import expression2GF
indicator = expression2GF(gridView,
                          dot(grad(u_h[0]), grad(u_h[0])),
                          0,
                          name="indicator")
# <markdowncell>
# We do the initial refinement of the grid.

# <codecell>
maxLevel = 9
startLevel = 4
hgrid = gridView.hierarchicalGrid
hgrid.globalRefine(startLevel)
for i in range(startLevel, maxLevel):
    fem.mark(indicator, 1.4, 1.2, 0, maxLevel)
    fem.adapt(u_h)
    fem.loadBalance(u_h)
    u_h.interpolate(initial_gf)

# <markdowncell>
# Let us start by plotting the initial state of the material, which is just a small circle in the centre.

# <codecell>
from dune.fem.plotting import plotComponents
import matplotlib.pyplot as pyplot
from dune.fem.function import levelFunction, partitionFunction
import matplotlib
vtk = gridView.sequencedVTK(
    "crystal",
    pointdata=[u_h],
コード例 #2
0
    polOrder = space.localOrder(element)
    newPolOrder = polOrder
    if estP < pTol:
        newPolOrder = polOrder - 1 if polOrder > 2 else polOrder
    elif estP > 100 * pTol:
        newPolOrder = polOrder + 1 if polOrder < maxOrder else polOrder
    pMarked[polOrder - 1] += 1
    return polOrder


while True:
    estimator(solution, estimate)
    eta2 = sum(estimate.dofVector)
    vtk()
    print("estimate:", eta2, tolerance)
    if eta2 < tolerance * tolerance * 2:
        break
    hMarked = mark(estimate, math.sqrt(eta2) / grid.size(0))
    # globalRefine(1,solution,solution)
    adapt(solution)
    print("h-adapted:", hMarked)

    estimator(solution, estimate)
    spaceAdapt(spacePm, markPm, [solutionPm])
    solutionPm.interpolate(solution)
    estimator(solutionPm, estimatePm)
    spaceAdapt(space, markp, [solution])
    print("p-adapted:", pMarked)

    scheme.solve(target=solution)
コード例 #3
0
        plot(uh, figure=(fig, 131 + count // 9), colorbar=False)
    pointFunctional.clear()
    error = computeFunctional(point, pointFunctional, eh)
    dual.solve(target=z, rhs=pointFunctional)
    zh.interpolate(z)
    estimator(uh, estimate)
    eta = sum(estimate.dofVector)
    dofs += [uh.space.size]
    errorVector += [error]
    estimateVector += [eta]
    if count % 3 == 2:
        print(count, ": size=", uh.space.grid.size(0), "estimate=", eta,
              "error=", error)
    if eta < tolerance:
        break
    marked = fem.mark(estimate, eta / uh.space.grid.size(0))
    fem.adapt(
        uh)  # can also be a list or tuple of function to prolong/restrict
    fem.loadBalance(uh)
    count += 1
plot(uh, figure=(fig, 131 + 2), colorbar=False)
pyplot.show()
pyplot.close('all')

# <markdowncell>
# Let's take a close up look of the refined region around the point of
# interest and the origin:

# <codecell>
fig = pyplot.figure(figsize=(30, 20))
plot(uh,
コード例 #4
0
ファイル: parcrystalTest.py プロジェクト: adedner/dune-fempy
# <codecell>
from dune.ufl import expression2GF
indicator = expression2GF(gridView,
                          dot(grad(u_h[0]), grad(u_h[0])),
                          0,
                          name="indicator")
# <markdowncell>
# We do the initial refinement of the grid.

# <codecell>
maxLevel = 8
startLevel = 3
gridView.hierarchicalGrid.globalRefine(startLevel)
u_h.interpolate(initial_gf)
for i in range(startLevel, maxLevel):
    marked = fem.mark(indicator, 1.4, 1.2, 0, maxLevel)
    # print("marked:",marked,"from elements",gridView.size(0))
    fem.adapt(gridView.hierarchicalGrid)
    fem.loadBalance(gridView.hierarchicalGrid)
    # print(gridView.size(0), end="\n")
    u_h.interpolate(initial_gf)
# print()

# <markdowncell>
# Let us start by plotting the initial state of the material, which is just a small circle in the centre.

# <codecell>
from dune.fem.plotting import plotComponents
import matplotlib.pyplot as pyplot
from dune.fem.function import levelFunction, partitionFunction
import matplotlib