コード例 #1
0
    def __init__(self, input_channels, output_channels, kernel_size,
                 apply_bn_relu, plus_one):
        super(DecoderBlock, self).__init__()
        # Upsample the inpput coming from previous layer
        self.up_convolution = UpconvolutionLayer(
            input_channels=input_channels,
            output_channels=output_channels,
            kernel_size=kernel_size)

        if plus_one:
            next_input_channels = input_channels + 1
        else:
            next_input_channels = input_channels

        # Aggregate skip and upsampled input
        self.convolution1 = conv_layer(input_channels=next_input_channels,
                                       output_channels=output_channels,
                                       kernel_size=kernel_size,
                                       stride=1,
                                       apply_bn_relu=True)

        # Learn from aggregation
        self.convolution2 = conv_layer(input_channels=output_channels,
                                       output_channels=output_channels,
                                       kernel_size=kernel_size,
                                       stride=1,
                                       apply_bn_relu=apply_bn_relu)
コード例 #2
0
 def __init__(self, channels, kernel_size, apply_bn_relu):
     super(StandardLayer, self).__init__()
     self.conv1 = conv_layer(input_channels=channels,
                             output_channels=channels,
                             stride=1,
                             kernel_size=kernel_size,
                             apply_bn_relu=True)
     self.conv2 = conv_layer(input_channels=channels,
                             output_channels=channels,
                             stride=1,
                             kernel_size=kernel_size,
                             apply_bn_relu=apply_bn_relu)
コード例 #3
0
 def __init__(self, input_channels, output_channels, kernel_size):
     super(UpconvolutionLayer, self).__init__()
     self.conv = conv_layer(input_channels=input_channels,
                            output_channels=output_channels,
                            stride=1,
                            kernel_size=kernel_size,
                            apply_bn_relu=True)
コード例 #4
0
    def __init__(self):
        super(CostVolumeDecoder, self).__init__()

        self.inverse_depth_base = 1 / Config.train_max_depth
        self.inverse_depth_multiplier = 1 / Config.train_min_depth - 1 / Config.train_max_depth

        self.decoder_block1 = DecoderBlock(input_channels=hyper_channels * 16,
                                           output_channels=hyper_channels * 8,
                                           kernel_size=3,
                                           apply_bn_relu=True,
                                           plus_one=False)

        self.decoder_block2 = DecoderBlock(input_channels=hyper_channels * 8,
                                           output_channels=hyper_channels * 4,
                                           kernel_size=3,
                                           apply_bn_relu=True,
                                           plus_one=True)

        self.decoder_block3 = DecoderBlock(input_channels=hyper_channels * 4,
                                           output_channels=hyper_channels * 2,
                                           kernel_size=3,
                                           apply_bn_relu=True,
                                           plus_one=True)

        self.decoder_block4 = DecoderBlock(input_channels=hyper_channels * 2,
                                           output_channels=hyper_channels,
                                           kernel_size=5,
                                           apply_bn_relu=True,
                                           plus_one=True)

        self.refine = torch.nn.Sequential(
            conv_layer(input_channels=hyper_channels + 4,
                       output_channels=hyper_channels,
                       kernel_size=5,
                       stride=1,
                       apply_bn_relu=True),
            conv_layer(input_channels=hyper_channels,
                       output_channels=hyper_channels,
                       kernel_size=5,
                       stride=1,
                       apply_bn_relu=True))

        self.depth_layer_one_sixteen = depth_layer_3x3(hyper_channels * 8)
        self.depth_layer_one_eight = depth_layer_3x3(hyper_channels * 4)
        self.depth_layer_quarter = depth_layer_3x3(hyper_channels * 2)
        self.depth_layer_half = depth_layer_3x3(hyper_channels)
        self.depth_layer_full = depth_layer_3x3(hyper_channels)
コード例 #5
0
    def __init__(self):
        super(CostVolumeEncoder, self).__init__()
        self.aggregator0 = conv_layer(
            input_channels=Config.train_n_depth_levels + fpn_output_channels,
            output_channels=hyper_channels,
            kernel_size=5,
            stride=1,
            apply_bn_relu=True)
        self.encoder_block0 = EncoderBlock(input_channels=hyper_channels,
                                           output_channels=hyper_channels * 2,
                                           kernel_size=5)
        ###
        self.aggregator1 = conv_layer(input_channels=hyper_channels * 2 +
                                      fpn_output_channels,
                                      output_channels=hyper_channels * 2,
                                      kernel_size=3,
                                      stride=1,
                                      apply_bn_relu=True)
        self.encoder_block1 = EncoderBlock(input_channels=hyper_channels * 2,
                                           output_channels=hyper_channels * 4,
                                           kernel_size=3)
        ###
        self.aggregator2 = conv_layer(input_channels=hyper_channels * 4 +
                                      fpn_output_channels,
                                      output_channels=hyper_channels * 4,
                                      kernel_size=3,
                                      stride=1,
                                      apply_bn_relu=True)
        self.encoder_block2 = EncoderBlock(input_channels=hyper_channels * 4,
                                           output_channels=hyper_channels * 8,
                                           kernel_size=3)

        ###
        self.aggregator3 = conv_layer(input_channels=hyper_channels * 8 +
                                      fpn_output_channels,
                                      output_channels=hyper_channels * 8,
                                      kernel_size=3,
                                      stride=1,
                                      apply_bn_relu=True)
        self.encoder_block3 = EncoderBlock(input_channels=hyper_channels * 8,
                                           output_channels=hyper_channels * 16,
                                           kernel_size=3)