def from_bqm_response(bqm, embedding_context, response, warnings=None, params=None, sampleset=None): """Construct problem data for visualization based on the unembedded BQM, the embedding used when submitting, and the low-level sampling response. Args: bqm (:class:`dimod.BinaryQuadraticModel`/:class:`dimod.core.bqm.BQM`): Problem in logical (unembedded) space, given as a BQM. embedding_context (dict): A map containing an embedding of logical problem onto the solver's graph (the ``embedding`` key) and embedding parameters used (e.g. ``chain_strength``, ``chain_break_method``, etc). response (:class:`dwave.cloud.computation.Future`): Sampling response, as returned by the low-level sampling interface in the Cloud Client (e.g. :meth:`dwave.cloud.solver.sample_ising` for Ising problems). warnings (list[dict], optional): Optional list of warnings. params (dict, optional): Sampling parameters used. sampleset (:class:`dimod.SampleSet`, optional): Optional unembedded sampleset. """ logger.debug("from_bqm_response({!r})".format( dict(bqm=bqm, response=response, response_energies=response['energies'], embedding_context=embedding_context, warnings=warnings, params=params, sampleset=sampleset))) solver = response.solver if not isinstance(response.solver, StructuredSolver): raise TypeError("only structured solvers are supported") topology = _get_solver_topology(solver) if topology['type'] not in SUPPORTED_SOLVER_TOPOLOGY_TYPES: raise TypeError("unsupported solver topology type") solver_id = solver.id problem_type = response.problem_type active_variables = response['active_variables'] active = set(active_variables) solutions = list(map(itemsgetter(*active_variables), response['solutions'])) energies = response['energies'] num_occurrences = response.num_occurrences num_variables = solver.num_qubits timing = response.timing # bqm vartype must match response vartype if problem_type == "ising": bqm = bqm.change_vartype(dimod.SPIN, inplace=False) else: bqm = bqm.change_vartype(dimod.BINARY, inplace=False) # get embedding parameters if 'embedding' not in embedding_context: raise ValueError("embedding not given") embedding = embedding_context.get('embedding') chain_strength = embedding_context.get('chain_strength') chain_break_method = embedding_context.get('chain_break_method') # if `embedding` is `dwave.embedding.transforms.EmbeddedStructure`, we don't # need `target_adjacency` emb_params = dict(embedding=embedding) if not hasattr(embedding, 'embed_bqm'): # proxy for detecting dict vs. EmbeddedStructure, without actually # importing EmbeddedStructure (did not exist in dwave-system<0.9.10) target_adjacency = edgelist_to_adjacency(solver.edges) emb_params.update(target_adjacency=target_adjacency) # get embedded bqm bqm_embedded = embed_bqm(bqm, chain_strength=chain_strength, smear_vartype=dimod.SPIN, **emb_params) linear, quadratic, offset = bqm_embedded.to_ising() problem_data = { "format": "qp", # SAPI non-conforming (nulls vs nans) "lin": [ uniform_get(linear, v, 0 if v in active else None) for v in solver._encoding_qubits ], "quad": [ quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0) for (q1, q2) in solver._encoding_couplers if q1 in active and q2 in active ], "embedding": embedding } # try to reconstruct sampling params if params is None: params = {'num_reads': int(sum(num_occurrences))} # expand with defaults params = _expand_params(solver, params, timing) # TODO: if warnings are missing, calculate them here (since we have the # low-level response) # construct problem stats problem_stats = _problem_stats(response=response, sampleset=sampleset, embedding_context=embedding_context) data = { "ready": True, "details": _details_dict(response), "data": _problem_dict(solver_id, problem_type, problem_data, params, problem_stats), "answer": _answer_dict(solutions, active_variables, energies, num_occurrences, timing, num_variables), "warnings": _warnings(warnings), "rel": dict(solver=solver), } if sampleset is not None: data["unembedded_answer"] = _unembedded_answer_dict(sampleset) logger.trace("from_bqm_response returned %r", data) return data
def from_qmi_response(problem, response, embedding_context=None, warnings=None, params=None, sampleset=None): """Construct problem data for visualization based on the low-level sampling problem definition and the low-level response. Args: problem ((list/dict, dict[(int, int), float]) or dict[(int, int), float]): Problem in Ising or QUBO form, conforming to solver graph. Note: if problem is given as tuple, it is assumed to be in Ising variable space, and if given as a dict, Binary variable space is assumed. Zero energy offset is always implied. response (:class:`dwave.cloud.computation.Future`): Sampling response, as returned by the low-level sampling interface in the Cloud Client (e.g. :meth:`dwave.cloud.Solver.sample_ising` for Ising problems). embedding_context (dict, optional): A map containing an embedding of logical problem onto the solver's graph (the ``embedding`` key) and embedding parameters used (e.g. ``chain_strength``). warnings (list[dict], optional): Optional list of warnings. params (dict, optional): Sampling parameters used. sampleset (:class:`dimod.SampleSet`, optional): Optional unembedded sampleset. """ logger.debug("from_qmi_response({!r})".format( dict(problem=problem, response=response, response_energies=response['energies'], embedding_context=embedding_context, warnings=warnings, params=params, sampleset=sampleset))) try: linear, quadratic = problem except: linear, quadratic = reformat_qubo_as_ising(problem) # make sure lin/quad are not dimod views (that handle directed edges) if isinstance(linear, BQMView): linear = dict(linear) if isinstance(quadratic, BQMView): quadratic = dict(quadratic) solver = response.solver if not isinstance(response.solver, StructuredSolver): raise TypeError("only structured solvers are supported") topology = _get_solver_topology(solver) if topology['type'] not in SUPPORTED_SOLVER_TOPOLOGY_TYPES: raise TypeError("unsupported solver topology type") solver_id = solver.id problem_type = response.problem_type variables = list(response.variables) active = active_qubits(linear, quadratic) # filter out invalid values (user's error in problem definition), since # SAPI ignores them too active = {q for q in active if q in solver.variables} # sanity check active_variables = response['active_variables'] assert set(active) == set(active_variables) solutions = list(map(itemsgetter(*active_variables), response['solutions'])) energies = response['energies'] num_occurrences = response.num_occurrences num_variables = solver.num_qubits timing = response.timing # note: we can't use encode_problem_as_qp(solver, linear, quadratic) because # visualizer accepts decoded lists (and nulls instead of NaNs) problem_data = { "format": "qp", # SAPI non-conforming (nulls vs nans) "lin": [ uniform_get(linear, v, 0 if v in active else None) for v in solver._encoding_qubits ], "quad": [ quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0) for (q1, q2) in solver._encoding_couplers if q1 in active and q2 in active ] } # include optional embedding if embedding_context is not None and 'embedding' in embedding_context: problem_data['embedding'] = embedding_context['embedding'] # try to reconstruct sampling params if params is None: params = {'num_reads': int(sum(num_occurrences))} # expand with defaults params = _expand_params(solver, params, timing) # construct problem stats problem_stats = _problem_stats(response=response, sampleset=sampleset, embedding_context=embedding_context) data = { "ready": True, "details": _details_dict(response), "data": _problem_dict(solver_id, problem_type, problem_data, params, problem_stats), "answer": _answer_dict(solutions, active_variables, energies, num_occurrences, timing, num_variables), "warnings": _warnings(warnings), "rel": dict(solver=solver), } if sampleset is not None: data["unembedded_answer"] = _unembedded_answer_dict(sampleset) logger.trace("from_qmi_response returned %r", data) return data
def test_one(self): obj = list(range(3)) f = itemsgetter(1) self.assertTrue(callable(f)) self.assertEqual(f(obj), (obj[1], ))
def test_multi(self): obj = list(range(3)) f = itemsgetter(0, 2) self.assertTrue(callable(f)) self.assertEqual(f(obj), (obj[0], obj[2]))
def test_nil(self): with self.assertRaises(TypeError): itemsgetter()