コード例 #1
0
def cluster_points(scattered_points, filename):
    # Set up problem
    # Note: max_distance gets used in division later on. Hence, the max(.., 1)
    #   is used to prevent a division by zero
    coordinates = [Coordinate(x, y) for x, y in scattered_points]
    max_distance = max(get_max_distance(coordinates), 1)

    # Build constraints
    csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

    # Apply constraint: coordinate can only be in one colour group
    choose_one_group = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
    for coord in coordinates:
        csp.add_constraint(choose_one_group, (coord.r, coord.g, coord.b))

    # Build initial BQM
    bqm = dwavebinarycsp.stitch(csp)

    # Edit BQM to bias for close together points to share the same color
    for i, coord0 in enumerate(coordinates[:-1]):
        for coord1 in coordinates[i + 1:]:
            # Set up weight
            d = get_distance(coord0, coord1) / max_distance  # rescale distance
            weight = -math.cos(d * math.pi)

            # Apply weights to BQM
            bqm.add_interaction(coord0.r, coord1.r, weight)
            bqm.add_interaction(coord0.g, coord1.g, weight)
            bqm.add_interaction(coord0.b, coord1.b, weight)

    # Edit BQM to bias for far away points to have different colors
    for i, coord0 in enumerate(coordinates[:-1]):
        for coord1 in coordinates[i + 1:]:
            # Set up weight
            # Note: rescaled and applied square root so that far off distances
            #   are all weighted approximately the same
            d = math.sqrt(get_distance(coord0, coord1) / max_distance)
            weight = -math.tanh(d) * 0.1

            # Apply weights to BQM
            bqm.add_interaction(coord0.r, coord1.b, weight)
            bqm.add_interaction(coord0.r, coord1.g, weight)
            bqm.add_interaction(coord0.b, coord1.r, weight)
            bqm.add_interaction(coord0.b, coord1.g, weight)
            bqm.add_interaction(coord0.g, coord1.r, weight)
            bqm.add_interaction(coord0.g, coord1.b, weight)

# Submit problem to D-Wave sampler
    sampler = EmbeddingComposite(DWaveSampler(solver={'qpu': True}))
    #sampler = neal.SimulatedAnnealingSampler()
    sampleset = sampler.sample(bqm, chain_strength=4, num_reads=1000)
    best_sample = sampleset.first.sample

    # Visualize graph problem
    dwave.inspector.show(bqm, sampleset)

    # Visualize solution
    groupings = get_groupings(best_sample)
    visualize_groupings(groupings, filename)
    return groupings
コード例 #2
0
    def test_sample_instantiation(self):
        # Check that values have not been instantiated
        sampler = LazyEmbeddingComposite(MockSampler())
        self.assertIsNone(sampler.embedding)
        self.assertIsNone(sampler.nodelist)
        self.assertIsNone(sampler.edgelist)
        self.assertIsNone(sampler.adjacency)
        self.assertIsNone(sampler.parameters)
        self.assertIsNone(sampler.properties)

        # Set up BQM and sample
        csp = dbc.ConstraintSatisfactionProblem(dbc.BINARY)
        csp.add_constraint(and_gate(['a', 'b', 'c']))
        bqm = dbc.stitch(csp)
        sampler.sample(bqm)

        # Check that values have been populated
        self.assertIsNotNone(sampler.embedding)
        self.assertEqual(sampler.nodelist, ['a', 'b', 'c'])
        self.assertEqual(sampler.edgelist, [('a', 'b'), ('a', 'c'),
                                            ('b', 'c')])
        self.assertEqual(sampler.adjacency, {
            'a': {'b', 'c'},
            'b': {'a', 'c'},
            'c': {'a', 'b'}
        })
        self.assertIsNotNone(sampler.parameters)
        self.assertIsNotNone(sampler.properties)
コード例 #3
0
    def test_eight_variable_constraint_smoketest(self):

        csp = dwavebinarycsp.ConstraintSatisfactionProblem(
            dwavebinarycsp.BINARY)

        variables = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

        # this is reducible but for our purposes here that's fine
        def f(a, b, c, d, e, f, g, h):
            if a and b:
                return False
            if c and d:
                return False
            if e and f:
                return False
            return not (g and h)

        csp.add_constraint(f, variables)

        bqm = dwavebinarycsp.stitch(csp)

        resp = dimod.ExactSolver().sample(bqm)

        ground_energy = min(resp.record['energy'])

        for sample, energy in resp.data(['sample', 'energy']):
            if energy == ground_energy:
                self.assertTrue(csp.check(sample))
            else:
                if abs(energy - ground_energy) < 2:
                    # if classical gap is less than 2
                    self.assertTrue(csp.check(sample))
コード例 #4
0
    def test_returned_gap_with_aux(self):
        """Verify that stitch is only allowing gaps that satisfy min_classical_gap to be returned.
        In this case, by allowing an auxiliary variable, the min_classical_gap should be achieved
        and stitch should allow a bqm to be returned.
        """
        csp = dwavebinarycsp.ConstraintSatisfactionProblem("SPIN")
        csp.add_constraint(operator.eq, ['a', 'b'])
        min_classical_gap = 3

        # No aux case: max_graph_size=2
        # Note: Should not be possible to satisfy min_classical_gap
        with self.assertRaises(dwavebinarycsp.exceptions.ImpossibleBQM):
            dwavebinarycsp.stitch(csp,
                                  min_classical_gap=min_classical_gap,
                                  max_graph_size=2)

        # One aux case: max_graph_size=3
        # Note: min_classical_gap should be satisfied when we have three nodes
        bqm = dwavebinarycsp.stitch(csp,
                                    min_classical_gap=min_classical_gap,
                                    max_graph_size=3)

        # Verify one aux case
        sampleset = dimod.ExactSolver().sample(bqm)
        energy_array = sampleset.record['energy']
        gap = max(energy_array) - min(energy_array)
        self.assertGreaterEqual(gap, min_classical_gap)
コード例 #5
0
    def __init__(self, job_dict, max_time=None):
        """
        Args:
            job_dict: A dictionary. It describes the jobs that need to be scheduled. Namely, the
              dict key is the name of the job and the dict value is the ordered list of tasks that
              the job must do. (See Job Dict Details below.)
            max_time: An integer. The upper bound on the amount of time the schedule can take.

        Job Dict Details:
            The job_dict has the following format:
              {"job_name": [(machine_name, integer_time_duration_on_machine), ..],
               ..
               "another_job_name": [(some_machine, integer_time_duration_on_machine), ..]}

            A small job_dict example:
              jobs = {"job_a": [("mach_1", 2), ("mach_2", 2), ("mach_3", 2)],
                      "job_b": [("mach_3", 3), ("mach_2", 1), ("mach_1", 1)],
                      "job_c": [("mach_2", 2), ("mach_1", 3), ("mach_2", 1)]}
        """

        self.tasks = []
        self.last_task_indices = []
        self.max_time = max_time    # will get decremented by 1 for zero-indexing; see _process_data
        self.csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

        # Populates self.tasks and self.max_time
        self._process_data(job_dict)
コード例 #6
0
ファイル: ImplDwave.py プロジェクト: ramyshahin/QDine
    def solve(self, checkDeadloack=True):
        csp = dwavebinarycsp.ConstraintSatisfactionProblem(
            dwavebinarycsp.BINARY)
        for i in range(self.N):
            c = self.chopsticks[i]
            next_c = self.chopsticks[(i + 1) % self.N]
            vars = [c + '_R', c + '_L']
            if checkDeadloack:
                csp.add_constraint(exactly1, vars)
            else:
                csp.add_constraint(atMost1, vars)

            phils = [c + '_R', next_c + '_L']
            if checkDeadloack:
                csp.add_constraint(exactly1, phils)

        bqm = dwavebinarycsp.stitch(csp)

        sampler = self.getSampler()
        try:
            start = time.time()
            response = sampler.sample(bqm, num_reads=50)
            end = time.time()
            t = end - start
            sample = next(response.samples())
            if not csp.check(sample):
                print("Failed to detect deadlock")
                t = 0
            else:
                if self.draw: self.drawConfig(sample)
        except:
            t = -1

        return t
コード例 #7
0
    def generate_dwavecsp(self):
        '''
            returns:
                a weighted constraint matrix generated by dwave's algorithm
        '''
        csp = dwavebinarycsp.ConstraintSatisfactionProblem('BINARY')

        def Aix_1(*args):
            return sum(list(args)) == 1

        for i in range(1, self.n + 1):
            args = []
            for k in range(1, self.k + 1):
                var_index = idx.index_1_q_to_l_1(i, k, self.k) - 1
                args.append(var_index)
            csp.add_constraint(Aix_1, args)

        def Aix_le_s(*args):
            return sum(list(args)) <= self.bunch_size

        for k in range(1, self.k + 1):
            args = []
            for i in range(1, self.n + 1):
                var_index = idx.index_1_q_to_l_1(i, k, self.k) - 1
                args.append(var_index)
            print("adding %d inequality" % k)
            csp.add_constraint(Aix_le_s, args)

        print("stitching...")
        bqm = dwavebinarycsp.stitch(csp, max_graph_size=24)
        mtx = bqm.to_numpy_matrix()
        print(mtx)
        return 0
コード例 #8
0
ファイル: maze.py プロジェクト: mdecandia/maze
    def __init__(self, n_rows, n_cols, start, end, walls):
        assert isinstance(
            n_rows,
            int) and n_rows > 0, "'n_rows' is not a positive integer".format(
                n_rows)
        assert isinstance(
            n_cols,
            int) and n_cols > 0, "'n_cols' is not a positive integer".format(
                n_cols)
        assert start != end, "'start' cannot be the same as 'end'"

        # Check label format
        assert_label_format_valid(start)
        assert_label_format_valid(end)

        for wall in walls:
            assert_label_format_valid(wall)

        # Instantiate
        self.n_rows = n_rows
        self.n_cols = n_cols
        self.start = start
        self.end = end
        self.walls = walls
        self.csp = dwavebinarycsp.ConstraintSatisfactionProblem(
            dwavebinarycsp.BINARY)
コード例 #9
0
ファイル: jsp.py プロジェクト: mziele1/job_shop_scheduling
    def __init__(self, job_dict, max_time=None, remove_impossible_times=True):
        super().__init__(job_dict=job_dict,
                         max_time=max_time,
                         remove_impossible_times=remove_impossible_times)
        self.csp = dwavebinarycsp.ConstraintSatisfactionProblem(
            dwavebinarycsp.BINARY)

        self.add_constraints()
コード例 #10
0
    def test_stitch_max_graph_size_is_1(self):
        csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

        csp.add_constraint(operator.eq, ['a', 'b'])
        csp.add_constraint(operator.ne, ['b', 'c'])

        with self.assertRaises(dwavebinarycsp.exceptions.ImpossibleBQM):
            bqm = dwavebinarycsp.stitch(csp, max_graph_size=1)
コード例 #11
0
    def test_stitch_2sat(self):
        csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.SPIN)
        for v in range(10):
            csp.add_constraint(operator.eq, [v, v + 1])

        bqm = stitcher.stitch(csp)

        self.assertTrue(all(bias == -1 for bias in bqm.quadratic.values()))
        self.assertTrue(all(bias == 0 for bias in bqm.linear.values()))
コード例 #12
0
def new(self='BINARY'):
    """Create an empty constraint satisfaction problem.

    Args:
        self(dimod.vartype): A string describing the variable type (either SPIN or BINARY) (default 'BINARY')
    Returns:
        dwavebinarycsp.ConstraintSatisfactionProblem: An empty constraint satisfaction problem."""
    # Return an empty CSP.
    return __dbc__.ConstraintSatisfactionProblem(self)
コード例 #13
0
    def test_stitch_constraint_too_large(self):
        csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

        def f(*args):
            return all(args)

        csp.add_constraint(f, list('abcdefghijk'))  # 11 variables

        with self.assertRaises(dwavebinarycsp.exceptions.ImpossibleBQM):
            bqm = dwavebinarycsp.stitch(csp, max_graph_size=8)
コード例 #14
0
    def test_csp_one_xor_impossible(self):

        csp = dwavebinarycsp.ConstraintSatisfactionProblem(
            dwavebinarycsp.BINARY)

        variables = ['a', 'b', 'c']
        xor = dwavebinarycsp.factories.constraint.gates.xor_gate(variables)
        csp.add_constraint(xor)

        with self.assertRaises(pm.ImpossiblePenaltyModel):
            bqm = dwavebinarycsp.stitch(csp, max_graph_size=3)
コード例 #15
0
def construct_xor_problem(size):
    if size < 2:
        size = 2
    xor_constraints = [
        p for p in list(itertools.product([0, 1], repeat=size))
        if (p.count(1) % 2 == 1)
    ]
    csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
    csp.add_constraint(
        dwavebinarycsp.Constraint.from_configurations(
            xor_constraints, ['q{}'.format(i) for i in range(size)],
            dwavebinarycsp.BINARY,
            name='XOR'))
    return csp
コード例 #16
0
def construct_xor_gates_problem(num_inputs):
    if num_inputs < 2:
        num_inputs = 2
    csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
    csp.add_constraint(gates.xor_gate(['q0', 'q1', 'out0'], name='XOR0'))
    for i in range(2, num_inputs):
        csp.add_constraint(
            gates.xor_gate([
                'q{}'.format(i), 'out{}'.format(i - 2), 'out{}'.format(i - 1)
            ],
                           name='XOR{}'.format(i - 1)))
    csp.add_constraint(
        lambda x: x,
        ['out{}'.format(num_inputs - 2)])  # last output must be True
    return csp
コード例 #17
0
ファイル: scheduling.py プロジェクト: JakBin1/Q
def scheduling(time, location, length, mandatory):
    if time:                                 # Business hours
        return (location and mandatory)      # In office and mandatory participation
    else:                                    # Outside business hours
        return ((not location) and length)   # Teleconference for a short duration

    import dwavebinarycsp
    csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
    csp.add_constraint(scheduling, ['time', 'location', 'length', 'mandatory'])

    bqm = dwavebinarycsp.stitch(csp)
    bqm.linear
    {'length': -2.0, 'location': 2.0, 'mandatory': 0.0, 'time': 2.0}
    bqm.quadratic
    {('location', 'length'): 2.0,
     ('mandatory', 'length'): 0.0,
     ('mandatory', 'location'): -2.0,
     ('time', 'length'): 0.0,
     ('time', 'location'): -4.0,
     ('time', 'mandatory'): 0.0}

    from dimod.reference.samplers import ExactSolver
    sampler = ExactSolver()
    solution = sampler.sample(bqm)

    min_energy = next(solution.data(['energy']))[0]
    print(min_energy)
    -2.0

    for sample, energy in solution.data(['sample', 'energy']):
        if energy == min_energy:
            time = 'business hours' if sample['time'] else 'evenings'
            location = 'office' if sample['location'] else 'home'
            length = 'short' if sample['length'] else 'long'
            mandatory = 'mandatory' if sample['mandatory'] else 'optional'
            print("During {} at {}, you can schedule a {} meeting that is {}".format(time, location, length, mandatory))



     if energy == min_energy:
         time = 'business hours' if sample['time'] else 'evenings'
         location = 'office' if sample['location'] else 'home'
         length = 'short' if sample['length'] else 'long'
         mandatory = 'mandatory' if sample['mandatory'] else 'optional'
         print("During {} at {}, you can schedule a {} meeting that is {}".format(time, location, length, mandatory))
コード例 #18
0
    def test_same_embedding(self):
        sampler = LazyEmbeddingComposite(MockSampler())

        # Set up Ising and sample
        h = {'a': 1, 'b': 1, 'c': 1}
        J = {('a', 'b'): 3, ('b', 'c'): -2, ('a', 'c'): 1}
        sampler.sample_ising(h, J)

        # Store embedding
        prev_embedding = sampler.embedding

        # Check that the same embedding is used
        csp2 = dbc.ConstraintSatisfactionProblem(dbc.BINARY)
        csp2.add_constraint(or_gate(['a', 'b', 'c']))
        bqm2 = dbc.stitch(csp2)
        sampler.sample(bqm2)

        self.assertEqual(sampler.embedding, prev_embedding)
コード例 #19
0
    def test_attempt_on_difficult_problem(self):
        # Set up xor-gate
        # Note: penaltymodel-lp would need an auxiliary variable in order to handle this;
        #   however, no auxiliaries are provided, hence, it should pass the problem to another
        #   penalty model.
        nodes = ['a', 'b', 'c']
        xor_gate_values = {(-1, -1, -1), (-1, 1, 1), (1, -1, 1), (1, 1, -1)}

        # penaltymodel-lp should not be able to handle an xor-gate
        with self.assertRaises(ValueError):
            lp.generate_bqm(nx.complete_graph(nodes), xor_gate_values, nodes)

        # Check that penaltymodel-lp is able to pass the problem to another penaltymodel
        csp = dbc.ConstraintSatisfactionProblem(dbc.SPIN)
        csp.add_constraint(xor_gate_values, ('a', 'b', 'c'))
        bqm = dbc.stitch(
            csp)  # BQM created by a penaltymodel that is not penaltymodel-lp
        self.assertGreaterEqual(len(bqm.linear) + len(bqm.quadratic),
                                1)  # Check BQM exists
コード例 #20
0
    def test_csp_one_xor(self):

        csp = dwavebinarycsp.ConstraintSatisfactionProblem(
            dwavebinarycsp.BINARY)

        variables = ['a', 'b', 'c']
        xor = dwavebinarycsp.factories.constraint.gates.xor_gate(variables)
        csp.add_constraint(xor)
        bqm = dwavebinarycsp.stitch(csp)

        resp = dimod.ExactSolver().sample(bqm)

        ground_energy = min(resp.record['energy'])

        for sample, energy in resp.data(['sample', 'energy']):
            if energy == ground_energy:
                self.assertTrue(csp.check(sample))
            else:
                if abs(energy - ground_energy) < 2:
                    # if classical gap is less than 2
                    self.assertTrue(csp.check(sample))
コード例 #21
0
    def test_returned_gap(self):
        """Verify that stitch is only allowing gaps that satisfy min_classical_gap to be returned.
        """
        # Set up CSP
        csp = dwavebinarycsp.ConstraintSatisfactionProblem("SPIN")
        csp.add_constraint(operator.ne, ['a', 'b'])

        # Show that CSP has a valid BQM
        small_gap = 2
        bqm = dwavebinarycsp.stitch(csp, min_classical_gap=small_gap, max_graph_size=2)

        # Verify the gap based on returned bqm
        sampleset = dimod.ExactSolver().sample(bqm)
        energy_array = sampleset.record['energy']
        gap = max(energy_array) - min(energy_array)
        self.assertGreaterEqual(gap, small_gap)

        # Same CSP with a larger min_classical_gap
        # Note: Even though there is a BQM for this CSP (shown above), stitch should throw an
        #   exception because the BQM does not satisfy the following min_classical_gap requirement.
        with self.assertRaises(dwavebinarycsp.exceptions.ImpossibleBQM):
            dwavebinarycsp.stitch(csp, min_classical_gap=4, max_graph_size=2)
コード例 #22
0
from dwave.system import DWaveSampler, EmbeddingComposite
import dwave.inspector
from dwavebinarycsp.factories import or_gate, and_gate, xor_gate
import dwavebinarycsp as dbc


def full_adder(c, in_a, in_b, cin, id):
    c.add_constraint(xor_gate([in_a, in_b, id + "_sum0"]))
    c.add_constraint(and_gate([in_a, in_b, id + "_carry0"]))
    c.add_constraint(xor_gate([id + "_sum0", cin, "sum" + id]))
    c.add_constraint(and_gate([id + "_sum0", cin, id + "_carry1"]))
    c.add_constraint(or_gate([id + "_carry0", id + "_carry1", id + "_cout"]))
    return c


csp = dbc.ConstraintSatisfactionProblem("BINARY")

csp = full_adder(csp, "a1", "b1", "cin", "0")
csp = full_adder(csp, "a2", "b2", "0_cout", "1")
csp = full_adder(csp, "a3", "b3", "1_cout", "2")
csp = full_adder(csp, "a4", "b4", "2_cout", "3")
csp = full_adder(csp, "a5", "b5", "3_cout", "4")
csp = full_adder(csp, "a6", "b6", "4_cout", "5")
csp = full_adder(csp, "a7", "b7", "5_cout", "6")
csp = full_adder(csp, "a8", "b8", "6_cout", "7")
csp = full_adder(csp, "a9", "b9", "7_cout", "8")
csp = full_adder(csp, "a10", "b10", "8_cout", "9")

for i in range(0, 9):
    csp.fix_variable("sum" + str(i), 1)
コード例 #23
0
def cluster_points(scattered_points, filename, architecture):
    # Set up problem
    # Note: max_distance gets used in division later on. Hence, the max(.., 1)
    #   is used to prevent a division by zero
    coordinates = [Coordinate(x, y) for x, y in scattered_points]
    max_distance = max(get_max_distance(coordinates), 1)

    # Build constraints
    csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

    # Apply constraint: coordinate can only be in one colour group
    choose_one_group = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
    for coord in coordinates:
        csp.add_constraint(choose_one_group, (coord.r, coord.g, coord.b))

    # Build initial BQM
    bqm = dwavebinarycsp.stitch(csp)

    # Edit BQM to bias for close together points to share the same color
    for i, coord0 in enumerate(coordinates[:-1]):
        for coord1 in coordinates[i + 1:]:
            # Set up weight
            d = get_distance(coord0, coord1) / max_distance  # rescale distance
            weight = -math.cos(d * math.pi)

            # Apply weights to BQM
            bqm.add_interaction(coord0.r, coord1.r, weight)
            bqm.add_interaction(coord0.g, coord1.g, weight)
            bqm.add_interaction(coord0.b, coord1.b, weight)

    # Edit BQM to bias for far away points to have different colors
    for i, coord0 in enumerate(coordinates[:-1]):
        for coord1 in coordinates[i + 1:]:
            # Set up weight
            # Note: rescaled and applied square root so that far off distances
            #   are all weighted approximately the same
            d = math.sqrt(get_distance(coord0, coord1) / max_distance)
            weight = -math.tanh(d) * 0.1

            # Apply weights to BQM
            bqm.add_interaction(coord0.r, coord1.b, weight)
            bqm.add_interaction(coord0.r, coord1.g, weight)
            bqm.add_interaction(coord0.b, coord1.r, weight)
            bqm.add_interaction(coord0.b, coord1.g, weight)
            bqm.add_interaction(coord0.g, coord1.r, weight)
            bqm.add_interaction(coord0.g, coord1.b, weight)

    # Submit problem to D-Wave sampler
    if architecture == 'pegasus':
        solver = DWaveSampler(solver={
            'topology__type': 'pegasus',
            'qpu': True
        })
        print(solver.solver)

        sampler = EmbeddingComposite(solver)
    else:
        solver = DWaveSampler(solver={
            'topology__type': 'chimera',
            'qpu': True
        })
        print(solver.solver)

        sampler = EmbeddingComposite(solver)

    sampleset = sampler.sample(bqm,
                               chain_strength=4,
                               num_reads=1000,
                               return_embedding=True)
    best_sample = sampleset.first.sample

    # Inspect the embedding
    embedding = sampleset.info['embedding_context']['embedding']
    num_qubits = 0

    for k in embedding.values():
        num_qubits += len(k)
    print("Number of qubits used in embedding = " + str(num_qubits))

    # Visualize graph problem
    dwave.inspector.show(bqm, sampleset)

    # Visualize solution
    groupings = get_groupings(best_sample)
    visualize_groupings(groupings, filename)

    # Print solution onto terminal
    # Note: This is simply a more compact version of 'best_sample'
    print(groupings)
コード例 #24
0
  NAND(x2,x3) == 1
  NAND(x2,x4) == 1
  NAND(x3,x5) == 1

CAUTION:
If you are using a live QPU, it is possible that the stitch() and
embedding will result in a physical configuration of qubits that does
not provide any solutions. This is a problem with the tool chain, not
the hardware. There is a great opportunity for someone to create a
constraint solver plus embedder that prevents embeddings without
solutions.

Let's run our single-row solver and see how it works.
'''

csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

# At least one qubit must be set
csp.add_constraint(or4, ['x1', 'x2', 'x3', 'x4'])

# No more than one qubit can be set
csp.add_constraint(nand, ['x1', 'x2'])
csp.add_constraint(nand, ['x1', 'x3'])
csp.add_constraint(nand, ['x1', 'x4'])
csp.add_constraint(nand, ['x2', 'x3'])
csp.add_constraint(nand, ['x2', 'x4'])
csp.add_constraint(nand, ['x3', 'x4'])

bqm = dwavebinarycsp.stitch(csp)
response = sampler.sample(bqm, num_reads=samples)
コード例 #25
0
def cluster_points(scattered_points, filename):
    # Set up problem
    coordinates = [Coordinate(x, y) for x, y in scattered_points]
    max_distance = get_max_distance(coordinates)

    # Build constraints
    csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

    # Apply constraint: coordinate can only be in one colour group
    choose_one_group = allowed_States(k)
    for coord in coordinates:
        mylist = list(vars(coord).values())
        mylist.remove(coord.x)
        mylist.remove(coord.y)

        csp.add_constraint(choose_one_group, mylist)

    # Build initial BQM
    bqm = dwavebinarycsp.stitch(csp)

    # Edit BQM to bias for close together points to share the same color
    for i, coord0 in enumerate(coordinates[:-1]):
        for coord1 in coordinates[i + 1:]:
            # Set up weight
            d = get_distance(coord0, coord1) / max_distance  # rescale distance
            weight = -math.cos(d * math.pi)

            # Apply weights to BQM

            for i in range(k):
                bqm.add_interaction(getattr(coord0, "x" + str(i)),
                                    getattr(coord1, "x" + str(i)), weight)

    # Edit BQM to bias for far away points to have different colors
    for i, coord0 in enumerate(coordinates[:-1]):
        for coord1 in coordinates[i + 1:]:
            # Set up weight
            # Note: rescaled and applied square root so that far off distances
            #   are all weighted approximately the same
            d = math.sqrt(get_distance(coord0, coord1) / max_distance)
            weight = -math.tanh(d) * 0.1

            # Apply weights to BQM
            for p in range(k):
                for m in range(k):
                    if p != m:
                        bqm.add_interaction(getattr(coord0, "x" + str(p)),
                                            getattr(coord1, "x" + str(m)),
                                            weight)

    # Submit problem to D-Wave sampler
    sampler = EmbeddingComposite(DWaveSampler(solver={'qpu': True}))
    sampleset = sampler.sample(bqm, chain_strength=4, num_reads=1000)
    best_sample = sampleset.first.sample

    # Visualize graph problem
    dwave.inspector.show(bqm, sampleset)

    # Visualize solution
    groupings = get_groupings(best_sample)
    visualize_groupings(groupings, filename)

    # Print solution onto terminal
    # Note: This is simply a more compact version of 'best_sample'
    print(groupings)
コード例 #26
0
ファイル: 01_factoring_overview.py プロジェクト: USP/D-Wave
# The graphic below shows an AND gate and its truth table, which gives the gate's output, $x_3$, for all combinations of inputs $x_1, x_2$.

# <img src="images/AND_TruthTableandGate.png" width=300x/>

# It's clear from the table that our problem's constraint, $L = SW_1 \wedge SW_2$, and the AND gate's operation, $x_3 = x_1x_2$, are equivalent. We can express our constraint as an AND gate.

# Ocean's [dwavebinarycsp](https://docs.ocean.dwavesys.com/projects/binarycsp/en/latest/) binary CSP tool provides factories for useful constraints such as logic gates. Run the cell below (by pressing the **Run** button with your mouse in the cell) to create a CSP with a constraint representing an AND gate.

# In[ ]:


import dwavebinarycsp as dbc
# Add an AND gate as a constraint to CSP and_csp defined for binary variables
and_gate = dbc.factories.and_gate(["x1", "x2", "x3"])
and_csp = dbc.ConstraintSatisfactionProblem('BINARY')
and_csp.add_constraint(and_gate)

# Test that for input x1,x2=1,1 the output is x3=1 (both switches on and light shining)
and_csp.check({"x1": 1, "x2": 1, "x3": 1})
# True

# ## Step 2: Convert to a BQM
# The quantum computer solves binary quadratic models. Let's express our light-circuit CSP as a BQM.

# An advantage of Formulation B is that BQMs are known for logic gates (you can find BQMs for gates in the D-Wave system documentation and see examples here: [Ocean software examples](https://docs.ocean.dwavesys.com/en/latest/getting_started.html#examples)). More than one BQM can represent our AND gate; it's just a polynomial of binary variables, with only linear and quadratic terms, that has lowest value for variables that match rows of the AND truth table. Ocean tools can do the math for you, but here let's first write out a BQM for our AND gate: $3x_3 + x_1x_2 - 2x_1x_3 - 2x_2x_3$.

# To see that this BQM represents the AND gate, you can set its variables to the values of the AND truth table, for example $x_1, x_2, x_3=0,0,0$, and to non-valid values, such as $ x_1, x_2, x_3=0,0,1$. All the former should produce lower values than any of the latter. The code cell below does so for all possible configurations.

# Run the next cell. In the printed output, the left column (under "E") is the BQM's value for the combinations of variables to the right (under "x1, x2, x3").
コード例 #27
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# https://support.dwavesys.com/hc/en-us/community/posts/360016737274-Save-time-Reuse-your-embedding-when-possible

import dwavebinarycsp as dbc
import dwavebinarycsp.factories.constraint.gates as gates
from dwave.system.composites import FixedEmbeddingComposite, EmbeddingComposite
from dwave.system.samplers import DWaveSampler

# Making two different BQMs (think: energy functions or optimization functions)
csp1 = dbc.ConstraintSatisfactionProblem(dbc.BINARY)
csp1.add_constraint(gates.and_gate(['a', 'b', 'c']))
bqm1 = dbc.stitch(csp1)

csp2 = dbc.ConstraintSatisfactionProblem(dbc.BINARY)
csp2.add_constraint(gates.or_gate(['a', 'b', 'c']))
bqm2 = dbc.stitch(csp2)

# Using Embedding Composite
sampler = EmbeddingComposite(DWaveSampler())
sampler.sample(bqm1)  # Gets a new embedding for bqm1
sampler.sample(bqm2)  # Gets a new embedding for bqm2

# Using Fixed Embedding Composite
# Note: bqm1 and bqm2 can both be represented by the same graph - triangle graph.
embedding = {
    'a': [0, 4],
    'b': [1],
    'c': [5]
}  # Embedding the triangle graph using QPU indices
コード例 #28
0
def get_bqm(shift_types, nurses, horizon, stitch_kwargs=None):

    csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

    # one shift for same person per day
    for nurse in nurses.keys():
        for day in range(horizon):
            labels = {get_label(nurse, day, st) for st in shift_types.keys()}
            csp.add_constraint(sum_to_one, labels)

    # no not_before violation
    allowed = {(0, 0), (1, 0), (0, 1)}
    for nurse in nurses.keys():
        for day in range(horizon - 1):
            for st_key, st_value in shift_types.items():
                for fst in st_value.not_before:
                    csp.add_constraint(
                        allowed, {
                            get_label(nurse, day, st_key),
                            get_label(nurse, day + 1, fst)
                        })

    # no more than maxShifts
    for nurse_key, nurse_value in nurses.items():
        labels = set()
        for st in shift_types.keys():
            for day in range(horizon):
                labels.add(get_label(nurse_key, day, st))
        csp.add_constraint(
            lambda *args: le(nurse_value.maxShifts[st], sum(args)), labels)

    # max consecutive shifts
    for nurse_key, nurse_value in nurses.items():
        labels = set()
        for day in range(horizon - (nurse_value.maxConsecutiveShifts + 1)):
            for i in range(nurse_value.maxConsecutiveShifts + 1):
                for st in shift_types.keys():
                    labels.add(get_label(nurse_key, day + 1, st))
        csp.add_constraint(
            lambda *args: ge(nurse_value.maxConsecutiveShifts, sum(args)),
            labels)

    # min consecutive shifts
    for nurse_key, nurse_value in nurses.items():
        labels = set()
        for day in range(horizon - (nurse_value.minConsecutiveShifts + 1)):
            for i in range(nurse_value.minConsecutiveShifts + 1):
                for st in shift_types.keys():
                    labels.add(get_label(nurse_key, day + 1, st))
        csp.add_constraint(
            lambda *args: le(nurse_value.minConsecutiveShifts, sum(args)),
            labels)

    stitch_kwargs = {}

    if stitch_kwargs is None:
        stitch_kwargs = {}
    bqm = dwavebinarycsp.stitch(csp, **stitch_kwargs)
    pruned_variables = list(bqm.variables)
    print(pruned_variables)
    for nurse in nurses:
        for day in range(horizon):
            for st in shift_types.keys():
                label = get_label(nurse, day, st)
                bias = 1
                if label in pruned_variables:
                    bqm.add_variable(label, bias)

    return bqm
コード例 #29
0
# Calogero Zarbo, Docebo, 24-Mar-2019
# D-Wave Challenge 9

import dwavebinarycsp
import dimod
import minorminer
from dwave.system.composites import FixedEmbeddingComposite, TilingComposite
from dwave.system.samplers import DWaveSampler


def not_all_equal(q1, q2, q3):
    return not ((q1 == q2) and (q2 == q3))


csp = dwavebinarycsp.ConstraintSatisfactionProblem(vartype=dimod.Vartype.SPIN)
csp.add_constraint(not_all_equal, ['a', 'b', 'c'])
csp.add_constraint(not_all_equal, ['c', 'd', 'e'])

bqm = dwavebinarycsp.stitch(csp)

chimera_cell = [(i, j + 4) for j in range(4) for i in range(4)]

embeddings = [
    minorminer.find_embedding(bqm.to_qubo()[0].keys(), chimera_cell)
    for i in range(100)
]
min_emb = min(embeddings, key=lambda x: len(sum(x.values(), [])))
print("Minimum embedding configuration:", min_emb)
print("Minimum embedding length:", len(sum(min_emb.values(), [])))

# Verification of the found embedding
コード例 #30
0
ファイル: dwc3.py プロジェクト: yasasp/Dwave-Challenges
def min_cost(s0,s1):
    global gcost
    j01 = -1
    h0 = -0.5
    h1 = 0

    c=h0*s0+h1*s1+j01*s0*s1
    if c<gcost:
        gcost=c
        return True
    else:
        return False

# Method 1 - Solving as a Constraint Satisfaction Problem
csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.SPIN)
shots=100
csp.add_constraint(min_cost,['s1','s2'])
bqm1 = dwavebinarycsp.stitch(csp, min_classical_gap=2, max_graph_size=8)
sampler1 = EmbeddingComposite(DWaveSampler())
response1 = sampler1.sample(bqm1, num_reads=shots)
print('************ Method 1 - Constaint Satisfaction Problem - Results ************** \n')
for res in response1.data(['sample', 'energy', 'num_occurrences']):
    print('|s1 = %s |s2 = %s | Energy = %f | Probability  = %f %% ' % (res.sample['s1'],res.sample['s2'],
          res.energy, res.num_occurrences*100/shots))


# Method 1 - Solving as a Binary Quadratic Model Problem
j01=-1
h0=-0.5
h1=0