def test_directly_constructed(self): x = Constant(1.0, 'x') y = Constant(2.0, 'y') s = Summation('summation', [x, y]) v = s() with self.test_session() as sess: assert sess.run(v) == 3.0
def get_data(self): path = self.resource_path() / 'model' / 'projection' / 'ToR' image = np.load(path / 'test_image.npy') with open(path / 'config.json') as fin: config = json.load(fin) image = Constant(image, 'image') assert tuple(image.shape) == tuple(config['grid']) image = Image(image, config['center'], config['size'])
def get_data(self): path = self.resource_path / 'physics' / 'ToRMap' image = np.load(path / 'test_image.npy').astype(np.float32) with open(path / 'config.json') as fin: config = json.load(fin) image = Constant(image, 'image') assert tuple(image.shape) == tuple(config['grid']) image = Image(image, config['center'], config['size']) lors = np.load(path / 'test_lors.npy')
def get_data(self): path = self.resource_path / 'physics' / 'Siddon' image = np.load(path / 'test_image.npy').astype(np.float32) with open(path / 'config.json') as fin: config = json.load(fin) image = Constant(image, 'image') assert tuple(image.shape) == tuple(config['grid']) image = Image(image, config['center'], config['size']) lors = np.load(path / 'test_lors.npy').astype(np.float32) lors = Constant(lors, 'lors') projected = np.load(path / 'test_projection.npy') back_projected = np.load(path / 'test_backprojection.npy') lors_value = Constant(projected, 'lors_value') return { 'image': image, 'lors': lors, 'lors_value': lors_value, 'projected': projected, 'backprojected': back_projected }
def test_inputs(self): x = Constant(1.0, 'x') s = Summation('summation', [x] * 3) assert s.tensors['input'] == [x] * 3
def test_construct_with_none_input(self): x = Constant(1.0, 'x') s = Summation('summation') v = s([x] * 3) with self.test_session() as sess: assert sess.run(v) == 3.0
def test_summation_of_same_tensor(self): x = Constant(1.0, 'x') s = Summation('summation', [x, x, x]) v = s() with self.test_session() as sess: assert sess.run(v) == 3.0
def test_run_list(self): c = Constant(1.0, 'const') with self.test_session() as sess: assert sess.run([c, c]) == [1.0, 1.0]
def load(self, target_graph): return { 'projection_data': Constant(np.ones([30, 7]), 'projection_data') }, ()
def kernel(self, inputs): return Constant(5 * np.ones([5] * 3, dtype=np.float32), 'result')
def get_subset(self): s = Constant(1, 'subset') return s
def get_dummy_input(self): return Constant(1.0, 'x')
def make_dummy_tensor(self, info=None): from dxl.learn.core import Constant if info is None: info = str(uuid.uuid4()) return Constant(0.0, info)