def _short_cut(self, name): conv2d_ins = Conv2D(info="conv2d", filters=self.config(self.KEYS.CONFIG.FILTERS), kernel_size=(1, 1), strides=(1, 1), padding='same', activation='basic') return Stack(info=self.info.child_scope(name), models=conv2d_ins, nb_layers=2)
def test_stack_basic(clean_config): models = [ Conv2D('conv1', 64, 3), Conv2D('conv2', 128, 3), Conv2D('conv3', 256, 3) ] x = tf.ones([32, 64, 64, 3], dtype=tf.float32) st = Stack(models) res = st(x) assert shape(res) == [32, 64, 64, 256]
def test_stack_parameters(clean_config): models = [ Conv2D('conv1', 64, 3), Conv2D('conv2', 128, 3), Conv2D('conv3', 256, 3) ] x = tf.ones([32, 64, 64, 3], dtype=tf.float32) st = Stack(models) res = st(x) assert st.parameters[0].get_shape() == (3, 3, 3, 64)
def test_Stack(self): x = self.get_input() nb_layers = 2 y_ = x stack_ins = Stack('Stack_test', tf.constant(x), self.make_model(), nb_layers) y = stack_ins() with self.variables_initialized_test_session() as sess: y = sess.run(y) self.assertAllEqual(y, y_)
def fmap(self, m): from dxl.learn.model.stack import Stack return Stack([m, self])