コード例 #1
0
def test_neural_entropy_uniform(num_experiments, scramble=True):
    # Uniform filling of all the bins
    transfer_entropy = []
    norm_entropy = []
    data_per_bin = 1
    num_data_points = int(.2 * BINS * BINS)
    print('num_data_points:{}'.format(num_data_points))
    brain_output = np.zeros((num_data_points, 2))
    row = 0
    counter = 0
    for i in range(BINS):
        for j in range(BINS):
            for _ in range(data_per_bin):
                counter += 1
                if counter >= num_data_points:
                    break
                brain_output[row, :] = [i / 100 + 0.0001, j / 100 + 0.0001]
                row += 1
    if scramble:
        rs = RandomState(1)
        for _ in range(num_experiments):
            rs.shuffle(brain_output)
            norm_entropy.append(get_shannon_entropy_2d(brain_output))
            transfer_entropy.append(get_transfer_entropy(brain_output))
    else:
        for _ in range(num_experiments):
            norm_entropy.append(get_shannon_entropy_2d(brain_output))
            transfer_entropy.append(get_transfer_entropy(brain_output))

    print("Transfer Entropy on uniform bin data: {}".format(transfer_entropy))
    print("Shannon Entropy on uniform bin data: {}".format(norm_entropy))
    # plt.plot(brain_output)
    # plt.show()
    return norm_entropy, transfer_entropy
コード例 #2
0
def test_coupled_oscillators(num_experiments):
    from dyadic_interaction.dynamical_systems import spring_mass_system
    transfer_entropy = []
    norm_entropy = []
    rs = RandomState(0)
    for _ in range(num_experiments):
        spring_data = spring_mass_system(masses=rs.uniform(1.0, 10.0, 2),
                                         constants=rs.uniform(1.0, 50.0, 2),
                                         lengths=rs.uniform(0.1, 5.0, 2))
        pos = np.column_stack((spring_data[:, 0], spring_data[:, 2]))
        # transfer_entropy, local_te = get_transfer_entropy(pos, local=True)
        norm_entropy.append(
            get_shannon_entropy_2d(pos, min_v=pos.min(), max_v=pos.max()))
        transfer_entropy.append(
            get_transfer_entropy(pos, min_v=pos.min(), max_v=pos.max()))

        print("Transfer Entropy of spring positions: {}".format(
            transfer_entropy))
        print("Shannon Entropy of spring positions: {}".format(norm_entropy))
        # plt.plot(pos)
        # plt.show()
        # vel = np.column_stack((spring_data[:, 1], spring_data[:, 3]))
        # transfer_entropy = get_transfer_entropy(vel, log=True)
        # norm_entropy = get_shannon_entropy_2d(vel)
        # print("Transfer Entropy of spring velocities: {}".format(transfer_entropy))
        # print("Shannon Entropy of spring velocities: {}".format(norm_entropy))
        # plt.plot(vel)
        # plt.show()
        # plt.plot(local_te[0])
        # plt.plot(local_te[1])
        # plt.show()
    return norm_entropy, transfer_entropy
コード例 #3
0
def analyze_sample_brain():
    import json
    with open('dyadic_interaction/tmp_brains.json') as f:
        data = json.load(f)
    df = np.array(data)
    t1_a1 = df[0][0]
    t1_a2 = df[0][1]
    te1 = get_transfer_entropy(t1_a1, log=True)
    te2 = get_transfer_entropy(t1_a2, log=True)
    print('TE agent1: {}'.format(te1))
    print('TE agent2: {}'.format(te2))
    fig = plt.figure()
    ax = fig.add_subplot(2, 2, 1)
    ax.plot(t1_a1[150:, 0])
    ax = fig.add_subplot(2, 2, 2)
    ax.plot(t1_a1[150:, 1])
    ax = fig.add_subplot(2, 2, 3)
    ax.plot(t1_a2[150:, 0])
    ax = fig.add_subplot(2, 2, 4)
    ax.plot(t1_a2[150:, 1])
    plt.show()
コード例 #4
0
def test_neural_entropy_random(num_experiments,
                               num_data_points,
                               distribution='uniform'):
    """
    Simulate uncorrelated random arrays.
    :param num_experiments: how many simulations to run
    :param num_data_points: how many data points per time series
    :param distribution: normal or uniform
    """
    transfer_entropy = []
    norm_entropy = []
    rs = RandomState(0)
    if distribution == 'normal':
        brain_output = rs.normal(0, 1, (num_experiments, num_data_points, 2))
        for i in range(num_experiments):
            norm_entropy.append(
                get_shannon_entropy_2d(brain_output[i, :, :],
                                       min_v=-3.,
                                       max_v=3.))
            transfer_entropy.append(
                get_transfer_entropy(brain_output[i, :, :],
                                     min_v=-3.,
                                     max_v=3.))
    else:
        brain_output = rs.rand(num_experiments, num_data_points, 2)
        for i in range(num_experiments):
            norm_entropy.append(get_shannon_entropy_2d(brain_output[i, :, :]))
            transfer_entropy.append(get_transfer_entropy(
                brain_output[i, :, :]))
    print("Simulated {} experiments of {} data points".format(
        num_experiments, num_data_points))
    print("Transfer Entropy on random {} data: {}".format(
        distribution, transfer_entropy))
    print("Shannon Entropy on random {} data: {}".format(
        distribution, norm_entropy))
    # plt.plot(brain_output)
    # plt.show()
    return norm_entropy, transfer_entropy
コード例 #5
0
def test_neural_entropy_single(num_experiments, num_data_points):
    # Constant arrays of the same value (single bin)
    transfer_entropy = []
    norm_entropy = []
    brain_output = np.ones((num_data_points, 2))
    for i in range(num_experiments):
        rs = RandomState(1)
        brain_output = add_noise(brain_output, rs, noise_level=1e-8)
        norm_entropy.append(get_shannon_entropy_2d(brain_output))
        transfer_entropy.append(get_transfer_entropy(brain_output))
    print("Transfer Entropy on 1D constant data: {}".format(transfer_entropy))
    print("Shannon Entropy on 1D constant data: {}".format(norm_entropy))
    # plt.plot(brain_output)
    # plt.show()
    return norm_entropy, transfer_entropy
コード例 #6
0
def test_neural_entropy_constant(num_experiments, num_data_points):
    # Correlated and constant arrays
    transfer_entropy = []
    norm_entropy = []
    source = np.ones(num_data_points)
    destination = np.ones(num_data_points) / 2.
    brain_output = np.column_stack((source, destination))
    for _ in range(num_experiments):
        rs = RandomState(1)
        brain_output = add_noise(brain_output, rs,
                                 noise_level=1e-8)  # does rs keep going?
        norm_entropy.append(get_shannon_entropy_2d(brain_output))
        transfer_entropy.append(get_transfer_entropy(brain_output))
    print("Transfer Entropy on 2D constant data: {}".format(transfer_entropy))
    print("Shannon Entropy on 2D constant data: {}".format(norm_entropy))
    # plt.plot(brain_output)
    # plt.show()
    return norm_entropy, transfer_entropy
コード例 #7
0
def test_neural_entropy_correlated(num_experiments,
                                   num_data_points,
                                   cov=0.99,
                                   delay=1):
    # One series random, the other correlated with the first at some delay
    transfer_entropy = []
    norm_entropy = []
    corr_expected = cov / (1 * math.sqrt(cov**2 + (1 - cov)**2))
    entropy_expected = -0.5 * math.log(1 - corr_expected**2)
    rs = RandomState(0)
    for _ in range(num_experiments):
        brain_output = generate_correlated_data(num_data_points, cov, delay,
                                                rs)
        norm_entropy.append(
            get_shannon_entropy_2d(brain_output, min_v=-3., max_v=3.))
        transfer_entropy.append(
            get_transfer_entropy(brain_output,
                                 delay,
                                 log=True,
                                 min_v=-3.,
                                 max_v=3.))

    # transfer_entropy, local_te = get_transfer_entropy(brain_output, delay, local=True)
    # local_te = np.array(local_te)
    # plt.plot(brain_output)
    # plt.show()
    # plt.plot(local_te[0])
    # plt.plot(local_te[1])
    # plt.show()

    print(
        "Transfer Entropy on correlated data ({} data points, covariance {}, delay {}): {}\n"
        "Expected TE: {}".format(num_data_points, cov, delay, transfer_entropy,
                                 entropy_expected))
    print("Shannon Entropy on correlated data: {}".format(norm_entropy))
    return norm_entropy, transfer_entropy
コード例 #8
0
    def compute_performance(self, t):
        performance_agent_AB = []
        if self.entropy_type=='transfer':
            # it only applies to neural_outputs (with 2 neurons)
            # add random noise to data before calculating transfer entropy
            for a in range(2):
                if self.ghost_index == a:
                    continue
                if self.isolation and a==1:
                    continue                    
                
                if self.concatenate:
                    all_values_for_computing_entropy = np.concatenate([
                        self.values_for_computing_entropy[t][a]
                        for t in range(self.num_trials)
                    ])
                else:
                    all_values_for_computing_entropy = self.values_for_computing_entropy[t][a]
                
                all_values_for_computing_entropy = utils.add_noise(
                    all_values_for_computing_entropy, 
                    self.random_state, 
                    noise_level=self.data_noise_level
                )

                # calculate performance        
                # TODO: understand what happens if reciprocal=False
                performance_agent_AB.append(
                    get_transfer_entropy(all_values_for_computing_entropy, binning=True) 
                )

        elif self.entropy_type in ['shannon-1d', 'shannon-dd']:
            # shannon-1d, shannon-dd
            if self.entropy_target_value == 'distance':
                if self.concatenate:
                    all_values_for_computing_entropy = np.concatenate([
                        self.values_for_computing_entropy
                    ])
                else:
                    all_values_for_computing_entropy = self.values_for_computing_entropy[t]
                min_v, max_v= 0., 100.
                performance_agent_AB = [
                    get_shannon_entropy_dd_simplified(
                        all_values_for_computing_entropy, min_v, max_v)
                ]
            if self.entropy_target_value == 'angle':
                # angle (apply modulo angle of 2*pi)
                # min_v, max_v= 0., 2*np.pi
                min_v, max_v= -np.pi/4, np.pi/4
                for a in range(2):
                    if self.ghost_index == a:
                        continue
                    if self.isolation and a==1:
                        continue
                    if self.concatenate:
                        all_values_for_computing_entropy = np.concatenate([
                            self.values_for_computing_entropy[t][a]
                            for t in range(self.num_trials)
                        ])
                    else:
                        all_values_for_computing_entropy = self.values_for_computing_entropy[t][a]
                    # all_values_for_computing_entropy = all_values_for_computing_entropy % 2*np.pi
                    all_values_for_computing_entropy = all_values_for_computing_entropy.flatten()
                    all_values_for_computing_entropy = np.diff(all_values_for_computing_entropy)
                    performance_agent_AB.append(
                        get_shannon_entropy_1d(all_values_for_computing_entropy, min_v, max_v)
                    )
            else: # neural
                min_v, max_v= 0., 1.
                for a in range(2):
                    if self.ghost_index == a:
                        continue
                    if self.isolation and a==1:
                        continue
                    if self.concatenate:
                        all_values_for_computing_entropy = np.concatenate([
                            self.values_for_computing_entropy[t][a]
                            for t in range(self.num_trials)
                        ])
                    else:
                        all_values_for_computing_entropy = self.values_for_computing_entropy[t][a]

                    if self.entropy_type == 'shannon-dd':
                        performance_agent_AB.append(
                            get_shannon_entropy_dd_simplified(all_values_for_computing_entropy, min_v, max_v)
                        )
                    else:
                        # shannon-1d
                        for c in range(self.num_brain_neurons):
                            column_values = all_values_for_computing_entropy[:,c]
                            performance_agent_AB.append(
                                get_shannon_entropy_1d(column_values, min_v, max_v)
                            )            
        else:
            # sample entropy
            # only applies to 1d data
            if self.entropy_target_value == 'neural':
                for a in range(2):
                    if self.ghost_index == a:
                        continue
                    if self.isolation and a==1:
                        continue
                    if self.concatenate:
                        all_values_for_computing_entropy = np.concatenate([
                            self.values_for_computing_entropy[t][a]
                            for t in range(self.num_trials)
                        ])
                    else:
                        all_values_for_computing_entropy = self.values_for_computing_entropy[t][a]

                    for c in range(self.num_brain_neurons):
                        column_values = all_values_for_computing_entropy[:,c]
                        mean = column_values.mean()
                        std = column_values.std()
                        normalize_values = (column_values - mean) / std
                        performance_agent_AB.append(
                            _numba_sampen(normalize_values, order=2, r=(0.2 * DEFAULT_SAMPLE_ENTROPY_NEURAL_STD)) 
                        )        
            elif self.entropy_target_value == 'distance':
                if self.concatenate:
                    all_values_for_computing_entropy = np.concatenate([
                        self.values_for_computing_entropy
                    ])
                else:
                    all_values_for_computing_entropy = self.values_for_computing_entropy[t]                    
                mean = all_values_for_computing_entropy.mean()
                std = all_values_for_computing_entropy.std()
                normalize_values = (all_values_for_computing_entropy - mean) / std
                performance_agent_AB = [
                    _numba_sampen(normalize_values.flatten(), order=2, 
                        r=(0.2 * DEFAULT_SAMPLE_ENTROPY_DISTANCE_STD)) 
                ]
            else: 
                assert self.entropy_target_value == 'angle'
                for a in range(2):
                    if self.ghost_index == a:
                        continue
                    if self.isolation and a==1:
                        continue
                    if self.concatenate:
                        all_values_for_computing_entropy = np.concatenate([
                            self.values_for_computing_entropy[t][a]
                            for t in range(self.num_trials)
                        ])
                    else:
                        all_values_for_computing_entropy = self.values_for_computing_entropy[t][a]
                    all_values_for_computing_entropy = np.diff(all_values_for_computing_entropy)
                    mean = all_values_for_computing_entropy.mean()
                    std = all_values_for_computing_entropy.std()
                    normalize_values = (all_values_for_computing_entropy - mean) / std
                    performance_agent_AB.append(
                        _numba_sampen(normalize_values.flatten(), order=2, r=(0.2 * DEFAULT_SAMPLE_ENTROPY_ANGLE_STD)) 
                    )      
        return performance_agent_AB