コード例 #1
0
 def drun(self, dlogz=0.1, ndim=4):
     """ simple main function for sampling. """
     # initialize our nested sampler
     sampler = dynesty.NestedSampler(self.log_likelihood, likemod.pt_te,
                                     ndim)
     sampler.run_nested(dlogz=dlogz)
     self.res = sampler.results
     self.res.summary()
     fig, _ = dyplot.runplot(self.res, lnz_error=False)
     fig1, _ = dyplot.traceplot(self.res, truths=np.zeros(ndim), \
                                 truth_color='black', show_titles=True, \
                                 trace_cmap='viridis', connect=True, \
                                 connect_highlight=range(10))
     fig2, _ = dyplot.cornerplot(self.res, color='blue', \
                             truth_color='black', show_titles=True, \
                             max_n_ticks=3, quantiles=None)
     fig.savefig('./output/evidence.png')
     fig1.savefig('./output/tracers.png')
     fig2.savefig('./output/cornerplot.png')
コード例 #2
0
    def fit(self,
            log_likelihood,
            start,
            num_dim,
            prior_transform,
            save_dims=None,
            uid=None):

        import dynesty

        filename = self.get_filename(uid)
        if os.path.exists(filename):
            self.logger.info("Not sampling, returning result from file.")
            return self.load_file(filename)
        self.logger.info("Sampling posterior now")

        if save_dims is None:
            save_dims = num_dim
        self.logger.debug("Fitting framework with %d dimensions" % num_dim)
        self.logger.info("Using dynesty Sampler")
        sampler = dynesty.NestedSampler(log_likelihood,
                                        prior_transform,
                                        num_dim,
                                        nlive=self.nlive)

        sampler.run_nested(maxiter=self.max_iter, print_progress=False)

        self.logger.debug("Fit finished")

        dresults = sampler.results
        chain = dresults["samples"]
        weights = np.exp(dresults["logwt"] - dresults["logz"][-1])
        max_weight = weights.max()
        trim = max_weight / 1e5
        mask = weights > trim
        likelihood = dresults["logl"]
        self._save(chain[mask, :], weights[mask], likelihood[mask], filename,
                   save_dims)
        return {
            "chain": chain[mask, :],
            "weights": weights[mask],
            "posterior": likelihood[mask]
        }
コード例 #3
0
ファイル: dynesty_pipeline.py プロジェクト: trjaffe/imagine
    def __call__(self, kwargs=dict()):
        """
        Parameters
        ----------
        kwargs : dict
            extra input argument controlling sampling process
            i.e., 'dlogz' for stopping criteria

        Returns
        -------
        Dynesty sampling results
        """
        log.debug('@ dynesty_pipeline::__call__')
        # init dynesty
        sampler = dynesty.NestedSampler(self._mpi_likelihood,
                                        self.prior,
                                        len(self._active_parameters),
                                        **self._sampling_controllers)
        sampler.run_nested(**kwargs)
        return sampler.results
コード例 #4
0
    def run(self, dlogz=10):
        """Main method to combine short nested sampling and Emcee"""

        ndim = len(self.labels)

        print('Initial Nested sampling')
        sampler = dynesty.NestedSampler(self._log_likelihood,
                                        likemod.pt_te,
                                        ndim,
                                        nlive=100)
        sampler.run_nested(dlogz=dlogz)
        res = sampler.results
        print("\nStarting Emcee")
        initial_value = res['samples'][-1]
        print("Initial values are:")
        print("{:s} = {:f}".format(self.labels[0], initial_value[0]))
        print("{:s} = {:f}".format(self.labels[1], initial_value[1]))
        print("{:s} = {:f}".format(self.labels[2], initial_value[2]))
        print("{:s} = {:f}".format(self.labels[3], initial_value[3]))
        self._emcee_fit(initial_value)
コード例 #5
0
    def _run_test(self):
        import dynesty
        import pandas as pd
        self.sampler = dynesty.NestedSampler(
            loglikelihood=self.log_likelihood,
            prior_transform=self.prior_transform,
            ndim=self.ndim, **self.sampler_init_kwargs)
        sampler_kwargs = self.sampler_function_kwargs.copy()
        sampler_kwargs['maxiter'] = 2

        self.sampler.run_nested(**sampler_kwargs)
        N = 100
        self.result.samples = pd.DataFrame(
            self.priors.sample(N))[self.search_parameter_keys].values
        self.result.nested_samples = self.result.samples
        self.result.log_likelihood_evaluations = np.ones(N)
        self.result.log_evidence = 1
        self.result.log_evidence_err = 0.1

        return self.result
コード例 #6
0
ファイル: test_plot.py プロジェクト: joshspeagle/dynesty
def test_gaussianx(bound):
    ndim = 3
    rstate = get_rstate()
    g = Gaussian(ndim=ndim)
    sampler = dynesty.NestedSampler(g.loglikelihood,
                                    g.prior_transform,
                                    g.ndim,
                                    nlive=nlive,
                                    rstate=rstate,
                                    bound=bound)
    sampler.run_nested(print_progress=printing)
    results = sampler.results
    dyplot.boundplot(results,
                     dims=(0, 1)[:min(ndim, 2)],
                     it=1000,
                     prior_transform=g.prior_transform,
                     show_live=False)
    dyplot.cornerbound(results,
                       it=3000,
                       prior_transform=g.prior_transform,
                       show_live=False)
コード例 #7
0
def test_unravel():
    # test unravel_run
    ndim = 2
    rstate = get_rstate()
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    rstate=rstate)
    sampler.run_nested(print_progress=printing)
    dyutil.unravel_run(sampler.results)

    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1, maxcall=1000, print_progress=printing)
    dyutil.unravel_run(sampler.results)
    logps = sampler.results.logl
    dyutil.reweight_run(sampler.results, logps / 4.)
コード例 #8
0
def test_periodic():
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    logz_true = np.log(np.sqrt(2 * np.pi) * erf(win / np.sqrt(2)) / (2 * win))
    thresh = 5
    ndim = 2
    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           periodic=[0])
    sampler.run_nested(dlogz_init=1, print_progress=printing)
    assert (np.abs(sampler.results.logz[-1] - logz_true) <
            thresh * sampler.results.logzerr[-1])
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    periodic=[0])
    sampler.run_nested(dlogz=1, print_progress=printing)
    assert (np.abs(sampler.results.logz[-1] - logz_true) <
            thresh * sampler.results.logzerr[-1])
コード例 #9
0
def test_unravel():
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    ndim = 2
    rstate = get_rstate()
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    rstate=rstate)
    sampler.run_nested()
    dyutil.unravel_run(sampler.results)

    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1, maxcall=1000)
    dyutil.unravel_run(sampler.results)
    logps = sampler.results.logl
    dyutil.reweight_run(sampler.results, logps / 4.)
コード例 #10
0
    def run_sampler(self):
        import dynesty
        self.sampler = dynesty.NestedSampler(
            loglikelihood=self.log_likelihood,
            prior_transform=self.prior_transform,
            ndim=self.ndim,
            **self.sampler_init_kwargs)

        if self.check_point:
            out = self._run_external_sampler_with_checkpointing()
        else:
            out = self._run_external_sampler_without_checkpointing()

        # Flushes the output to force a line break
        if self.kwargs["verbose"]:
            print("")

        # self.result.sampler_output = out
        weights = np.exp(out['logwt'] - out['logz'][-1])
        nested_samples = DataFrame(out.samples,
                                   columns=self.search_parameter_keys)
        nested_samples['weights'] = weights
        nested_samples['log_likelihood'] = out.logl

        self.result.samples = dynesty.utils.resample_equal(
            out.samples, weights)
        self.result.nested_samples = nested_samples
        self.result.log_likelihood_evaluations = self.reorder_loglikelihoods(
            unsorted_loglikelihoods=out.logl,
            unsorted_samples=out.samples,
            sorted_samples=self.result.samples)
        self.result.log_evidence = out.logz[-1]
        self.result.log_evidence_err = out.logzerr[-1]

        if self.plot:
            self.generate_trace_plots(out)

        return self.result
コード例 #11
0
ファイル: test_gau.py プロジェクト: joshspeagle/dynesty
def test_gaussian():
    sig = 5
    rstate = get_rstate()
    g = Gaussian()
    sampler = dynesty.NestedSampler(g.loglikelihood,
                                    g.prior_transform,
                                    g.ndim,
                                    nlive=nlive,
                                    rstate=rstate)
    sampler.run_nested(print_progress=printing)
    # check that jitter/resample work
    # for not dynamic sampler
    dyfunc.jitter_run(sampler.results, rstate=rstate)
    dyfunc.resample_run(sampler.results, rstate=rstate)

    # add samples
    # check continuation behavior
    sampler.run_nested(dlogz=0.1, print_progress=printing)

    # get errors
    nerr = 3
    result_list = []
    for i in range(nerr):
        sampler.reset()
        sampler.run_nested(print_progress=False)
        results = sampler.results
        result_list.append(results)
        pos = results.samples
        wts = np.exp(results.logwt - results.logz[-1])
        mean, cov = dyfunc.mean_and_cov(pos, wts)
        logz = results.logz[-1]
        assert (np.abs(logz - g.logz_truth) < sig * results.logzerr[-1])
    res_comb = dyfunc.merge_runs(result_list)
    assert (np.abs(res_comb.logz[-1] - g.logz_truth) <
            sig * results.logzerr[-1])
    # check summary
    res = sampler.results
    res.summary()
コード例 #12
0
ファイル: test_gau.py プロジェクト: joshspeagle/dynesty
def test_bounding_sample(bound, sample):
    # check various bounding methods

    rstate = get_rstate()
    if bound == 'none':
        if sample != 'unif':
            g = Gaussian(0.1)
        else:
            g = Gaussian(corr=0., prior_win=10)
            # make live easy if bound is none
            # but also not too easy so propose_point() is exercised
    else:
        g = Gaussian()
    sampler = dynesty.NestedSampler(g.loglikelihood,
                                    g.prior_transform,
                                    g.ndim,
                                    nlive=nlive,
                                    bound=bound,
                                    sample=sample,
                                    rstate=rstate)
    sampler.run_nested(print_progress=printing)
    check_results_gau(sampler.results, g, rstate)
    print(sampler.citations)
コード例 #13
0
def plot(N1, prior_dist, H, dlogz_val, nlive_val, **prior_kwargs):

    plt.figure(figsize=(15, 10))
    plt.suptitle(' dlogz = ' + str(dlogz_val) + ', nlive = ' \
                 + str(nlive_val), fontsize = 25, ha = 'center')

    #prior transform (constant)

    for i, n_values in enumerate(N1):

        sum_val = generator(H, n_values)  #total sum of Hval

        def log_likelyhood(H):
            return np.log(like_func(n_values, sum_val, H[0]))

        #same as found in documentation:

        ndim = 1  #number of dimensions in the problem
        sampler = dynesty.NestedSampler(log_likelyhood, prior_dist, ndim, \
                                        bound='single', nlive=nlive_val)

        sampler.run_nested(dlogz=dlogz_val, print_progress=False)
        results = sampler.results

        x_axis = results.samples
        y_axis = np.exp(results.logl)

        plt.subplot(4, 4, i + 1)
        plt.plot(x_axis, y_axis, '.', color="b")
        plt.title('n_values =  ' + str(n_values))
        plt.xlabel('likelihood')
        plt.ylabel('N0 of heads')

    plt.tight_layout(rect=[0, 0.03, 1, 0.95])
    #plt.savefig( "gaussian_0.5_0.2" + str(dlogz_val) +str(nlive_val) +".png", \
    #           dpi =300, bbox_inches = 'tight')
    plt.show()
コード例 #14
0
def test_gaussian():
    logz_tol = 1
    sampler = dynesty.NestedSampler(loglikelihood_gau,
                                    prior_transform_gau,
                                    ntotdim,
                                    nlive=nlive,
                                    ncdim=ndim_gau)
    sampler.run_nested(print_progress=printing)
    # check that jitter/resample/simulate_run work
    # for not dynamic sampler
    dyfunc.jitter_run(sampler.results)
    dyfunc.resample_run(sampler.results)
    dyfunc.simulate_run(sampler.results)

    # add samples
    # check continuation behavior
    sampler.run_nested(dlogz=0.1, print_progress=printing)

    # get errors
    nerr = 2
    result_list = []
    for i in range(nerr):
        sampler.reset()
        sampler.run_nested(print_progress=False)
        results = sampler.results
        result_list.append(results)
        pos = results.samples
        wts = np.exp(results.logwt - results.logz[-1])
        mean, cov = dyfunc.mean_and_cov(pos, wts)
        logz = results.logz[-1]
        assert (np.abs(logz - logz_truth_gau) < logz_tol)
    res_comb = dyfunc.merge_runs(result_list)
    assert (np.abs(res_comb.logz[-1] - logz_truth_gau) < logz_tol)
    # check summary
    res = sampler.results
    res.summary()
コード例 #15
0
def fit_gaia_data(name, gaia_data, clobber=False):
    # We will fit for jitter parameters for each magnitude
    jitter_vars = ["G", "BP", "RP"]

    # Set up an isochrones model using the MIST tracks
    mist = isochrones.get_ichrone("mist", bands=["G", "BP", "RP"])
    mod = isochrones.SingleStarModel(mist, **gaia_data)

    # Return the existing samples if not clobbering
    output_dir = os.path.join(OUTPUT_DIR, __version__, name)
    os.makedirs(output_dir, exist_ok=True)
    fn = os.path.join(output_dir, "star.h5")
    if (not clobber) and os.path.exists(fn):
        mod._samples = pd.read_hdf(fn, "samples")
        mod._derived_samples = pd.read_hdf(fn, "derived_samples")
        return mod

    with open(os.path.join(output_dir, "gaia.json"), "w") as f:
        json.dump(
            dict((k, v.tolist()) for k, v in gaia_data.items()),
            f,
            indent=2,
            sort_keys=True,
        )

    # These functions wrap isochrones so that they can be used with dynesty:
    def prior_transform(u):
        cube = np.copy(u)
        mod.mnest_prior(cube[: mod.n_params], None, None)
        cube[mod.n_params :] = -10 + 20 * cube[mod.n_params :]
        return cube

    def loglike(theta):
        ind0 = mod.n_params
        lp0 = 0.0
        for i, k in enumerate(jitter_vars):
            err = np.sqrt(gaia_data[k][1] ** 2 + np.exp(theta[ind0 + i]))
            lp0 -= 2 * np.log(err)  # This is to fix a bug in isochrones
            mod.kwargs[k] = (gaia_data[k][0], err)
        lp = lp0 + mod.lnpost(theta[: mod.n_params])
        if np.isfinite(lp):
            return np.clip(lp, -1e10, np.inf)
        return -1e10

    # Run nested sampling on this model
    sampler = dynesty.NestedSampler(
        loglike, prior_transform, mod.n_params + len(jitter_vars)
    )
    strt = time.time()
    sampler.run_nested()
    total_time = (time.time() - strt) / 60.0
    print("Sampling took {0} minutes".format(total_time))

    # Resample the chain to get unit weight samples and update the isochrones
    # model
    results = sampler.results
    samples = dynesty.utils.resample_equal(
        results.samples, np.exp(results.logwt - results.logz[-1])
    )
    df = mod._samples = pd.DataFrame(
        dict(
            zip(
                list(mod.param_names)
                + ["log_jitter_" + k for k in jitter_vars],
                samples.T,
            )
        )
    )
    mod._derived_samples = mod.ic(*[df[c].values for c in mod.param_names])
    mod._derived_samples["parallax"] = 1000.0 / df["distance"]
    mod._derived_samples["distance"] = df["distance"]
    mod._derived_samples["AV"] = df["AV"]

    # Save these results to disk
    mod._samples.to_hdf(fn, "samples")
    mod._derived_samples.to_hdf(fn, "derived_samples")

    # Save the summary to disk
    mod._derived_samples.describe().transpose().to_csv(
        os.path.join(output_dir, "star_summary.csv")
    )

    # Summarize the sampling performance
    summary = dict(
        nlive=int(results.nlive),
        niter=int(results.niter),
        ncall=int(sum(results.ncall)),
        eff=float(results.eff),
        logz=float(results.logz[-1]),
        logzerr=float(results.logzerr[-1]),
        total_time=float(total_time),
    )
    with open(
        os.path.join(output_dir, "star_sampling_summary.json"), "w"
    ) as f:
        json.dump(summary, f, indent=True, sort_keys=True)

    return mod, sampler
コード例 #16
0
def ns_fit(datadir):

    #::: init
    config.init(datadir)

    #::: settings
    nlive = config.BASEMENT.settings[
        'ns_nlive']  # (default 500) number of live points
    bound = config.BASEMENT.settings[
        'ns_bound']  # (default 'single') use MutliNest algorithm for bounds
    ndim = config.BASEMENT.ndim  # number of parameters
    sample = config.BASEMENT.settings[
        'ns_sample']  # (default 'auto') random walk sampling
    tol = config.BASEMENT.settings[
        'ns_tol']  # (defualt 0.01) the stopping criterion

    #::: run
    if config.BASEMENT.settings['ns_modus'] == 'static':
        logprint('\nRunning Static Nested Sampler...')
        logprint('--------------------------')
        t0 = timer()

        if config.BASEMENT.settings['multiprocess']:
            with closing(
                    Pool(processes=(config.BASEMENT.
                                    settings['multiprocess_cores']))) as pool:
                logprint('\nRunning on',
                         config.BASEMENT.settings['multiprocess_cores'],
                         'CPUs.')
                sampler = dynesty.NestedSampler(
                    ns_lnlike,
                    ns_prior_transform,
                    ndim,
                    pool=pool,
                    queue_size=config.BASEMENT.settings['multiprocess_cores'],
                    bound=bound,
                    sample=sample,
                    nlive=nlive)
                sampler.run_nested(
                    dlogz=tol,
                    print_progress=config.BASEMENT.settings['print_progress'])

        else:
            sampler = dynesty.NestedSampler(ns_lnlike,
                                            ns_prior_transform,
                                            ndim,
                                            bound=bound,
                                            sample=sample,
                                            nlive=nlive)
            sampler.run_nested(
                dlogz=tol,
                print_progress=config.BASEMENT.settings['print_progress'])

        t1 = timer()
        timedynesty = (t1 - t0)
        logprint("\nTime taken to run 'dynesty' (in static mode) is {} hours".
                 format(int(timedynesty / 60. / 60.)))

    elif config.BASEMENT.settings['ns_modus'] == 'dynamic':
        logprint('\nRunning Dynamic Nested Sampler...')
        logprint('--------------------------')
        t0 = timer()

        if config.BASEMENT.settings['multiprocess']:
            with closing(
                    Pool(processes=config.BASEMENT.
                         settings['multiprocess_cores'])) as pool:
                logprint('\nRunning on',
                         config.BASEMENT.settings['multiprocess_cores'],
                         'CPUs.')
                sampler = dynesty.DynamicNestedSampler(
                    ns_lnlike,
                    ns_prior_transform,
                    ndim,
                    pool=pool,
                    queue_size=config.BASEMENT.settings['multiprocess_cores'],
                    bound=bound,
                    sample=sample)
                sampler.run_nested(
                    nlive_init=nlive,
                    dlogz_init=tol,
                    print_progress=config.BASEMENT.settings['print_progress'])

        else:
            sampler = dynesty.DynamicNestedSampler(ns_lnlike,
                                                   ns_prior_transform,
                                                   ndim,
                                                   bound=bound,
                                                   sample=sample)
            sampler.run_nested(
                nlive_init=nlive,
                print_progress=config.BASEMENT.settings['print_progress'])

        t1 = timer()
        timedynestydynamic = (t1 - t0)
        logprint(
            "\nTime taken to run 'dynesty' (in dynamic mode) is {:.2f} hours".
            format(timedynestydynamic / 60. / 60.))

    #::: pickle-save the 'results' class
    results = sampler.results
    f = gzip.GzipFile(
        os.path.join(config.BASEMENT.outdir, 'save_ns.pickle.gz'), 'wb')
    pickle.dump(results, f)
    f.close()

    #::: return a German saying
    try:
        with open(
                os.path.join(os.path.dirname(__file__), 'utils',
                             'quotes2.txt')) as dataset:
            return (np.random.choice([l for l in dataset]))
    except:
        return ('42')
コード例 #17
0
def pyorbit_dynesty(config_in, input_datasets=None, return_output=None):

    output_directory = './' + config_in['output'] + '/dynesty/'

    mc = ModelContainerDynesty()
    pars_input(config_in, mc, input_datasets)

    if mc.nested_sampling_parameters['shutdown_jitter']:
        for dataset in mc.dataset_dict.itervalues():
            dataset.shutdown_jitter()

    mc.model_setup()
    mc.create_variables_bounds()
    mc.initialize_logchi2()

    mc.create_starting_point()

    results_analysis.results_resumen(mc, None, skip_theta=True)

    mc.output_directory = output_directory

    print()
    print('Reference Time Tref: ', mc.Tref)
    print()
    print('*************************************************************')
    print()

    import dynesty

    # "Standard" nested sampling.
    sampler = dynesty.NestedSampler(mc.dynesty_call, mc.dynesty_priors,
                                    mc.ndim)
    sampler.run_nested()
    results = sampler.results

    # "Dynamic" nested sampling.
    dsampler = dynesty.DynamicNestedSampler(mc.dynesty_call, mc.dynesty_priors,
                                            mc.ndim)
    dsampler.run_nested()
    dresults = dsampler.results

    from dynesty import plotting as dyplot

    # Plot a summary of the run.
    rfig, raxes = dyplot.runplot(results)

    # Plot traces and 1-D marginalized posteriors.
    tfig, taxes = dyplot.traceplot(results)

    # Plot the 2-D marginalized posteriors.
    cfig, caxes = dyplot.cornerplot(results)

    from dynesty import utils as dyfunc

    # Extract sampling results.
    samples = results.samples  # samples
    weights = np.exp(results.logwt - results.logz[-1])  # normalized weights

    # Compute 5%-95% quantiles.
    quantiles = dyfunc.quantile(samples, [0.05, 0.95], weights=weights)

    # Compute weighted mean and covariance.
    mean, cov = dyfunc.mean_and_cov(samples, weights)

    # Resample weighted samples.
    samples_equal = dyfunc.resample_equal(samples, weights)

    # Generate a new set of results with statistical+sampling uncertainties.
    results_sim = dyfunc.simulate_run(results)
    """ A dummy file is created to let the cpulimit script to proceed with the next step"""
    nested_sampling_create_dummy_file(mc)

    if return_output:
        return mc
    else:
        return
コード例 #18
0
    mass_sum = np.sum(param_vector)

    loglikeli = log_pdf(msqr1, DATA.m21_sqr,
                        DATA.m21_sqr_error)  # Smaller mass gap
    loglikeli += log_pdf(msqr2, DATA.m31_sqr,
                         DATA.m31_sqr_error)  # Larger mass gap
    loglikeli += log_pdf(mass_sum, DATA.sum_of_masses_offset,
                         DATA.sum_of_masses_one_sigma)

    return loglikeli


# Move to separate script
sampler = dy.NestedSampler(loglikelihood=evaluate_log_likelihood_of_parameters,
                           prior_transform=prior_map,
                           ndim=3,
                           nlive=1_000,
                           bound='multi',
                           sample='auto')

sampler.run_nested(dlogz=0.01, maxiter=100_000)
sampler.results.summary()

# iter: 23487 | +1000 | bound: 65 | nc: 1 | ncall: 102516 | eff(%): 23.886 | loglstar:   -inf < 22.634 <    inf | logz:  3.769 +/-    nan | dlogz:  0.000 >  0.010                                      Summary
# =======
# nlive: 1000
# niter: 23487
# ncall: 102516
# eff(%): 23.886
# logz:  3.769
コード例 #19
0
    def runsampler(self, samplerdict):
        # pull out user defined sampler variables
        npoints = samplerdict.get('npoints', 200)
        samplertype = samplerdict.get('samplertype', 'multi')
        bootstrap = samplerdict.get('bootstrap', 0)
        update_interval = samplerdict.get('update_interval', 0.6)
        samplemethod = samplerdict.get('samplemethod', 'unif')
        delta_logz_final = samplerdict.get('delta_logz_final', 0.01)
        flushnum = samplerdict.get('flushnum', 10)
        maxiter = samplerdict.get('maxiter', sys.maxint)

        # set start time
        starttime = datetime.now()
        if self.verbose:
            print(
                'Start Dynesty w/ {0} number of samples, Ndim = {1}, and w/ stopping criteria of dlog(z) = {2}: {3}'
                .format(npoints, self.ndim, delta_logz_final, starttime))
        sys.stdout.flush()

        # initialize sampler object
        dy_sampler = dynesty.NestedSampler(
            lnprobfn,
            self.priorobj.priortrans,
            self.ndim,
            logl_args=[self.likeobj, self.priorobj],
            nlive=npoints,
            bound=samplertype,
            sample=samplemethod,
            update_interval=update_interval,
            bootstrap=bootstrap,
        )

        sys.stdout.flush()

        ncall = 0
        nit = 0

        # start sampling
        for it, results in enumerate(
                dy_sampler.sample(dlogz=delta_logz_final)):
            (worst, ustar, vstar, loglstar, logvol, logwt, logz, logzvar, h,
             nc, worst_it, propidx, propiter, eff, delta_logz) = results

            self.outff.write('{0} '.format(it))
            self.outff.write(' '.join([str(q) for q in vstar]))
            self.outff.write(' {0} {1} {2} {3} {4} {5} {6} '.format(
                loglstar, logvol, logwt, h, nc, logz, delta_logz))
            self.outff.write('\n')

            ncall += nc
            nit = it

            if ((it % flushnum) == 0) or (it == maxiter):
                self.outff.flush()

                if self.verbose:
                    # format/output results
                    if logz < -1e6:
                        logz = -np.inf
                    if delta_logz > 1e6:
                        delta_logz = np.inf
                    if logzvar >= 0.:
                        logzerr = np.sqrt(logzvar)
                    else:
                        logzerr = np.nan
                    if logzerr > 1e6:
                        logzerr = np.inf

                    sys.stdout.write(
                        "\riter: {0:d} | nc: {1:d} | ncall: {2:d} | eff(%): {3:6.3f} | "
                        "logz: {4:6.3f} +/- {5:6.3f} | dlogz: {6:6.3f} > {7:6.3f}      "
                        .format(nit, nc, ncall, eff, logz, logzerr, delta_logz,
                                delta_logz_final))
                    sys.stdout.flush()
            if (it == maxiter):
                break

        # add live points to sampler object
        for it2, results in enumerate(dy_sampler.add_live_points()):
            # split up results
            (worst, ustar, vstar, loglstar, logvol, logwt, logz, logzvar, h,
             nc, worst_it, boundidx, bounditer, eff, delta_logz) = results

            self.outff.write('{0} '.format(nit + it2))

            self.outff.write(' '.join([str(q) for q in vstar]))
            self.outff.write(' {0} {1} {2} {3} {4} {5} {6} '.format(
                loglstar, logvol, logwt, h, nc, logz, delta_logz))
            self.outff.write('\n')

            ncall += nc

            ncall += nc

            if self.verbose:
                # format/output results
                if logz < -1e6:
                    logz = -np.inf
                if delta_logz > 1e6:
                    delta_logz = np.inf
                if logzvar >= 0.:
                    logzerr = np.sqrt(logzvar)
                else:
                    logzerr = np.nan
                if logzerr > 1e6:
                    logzerr = np.inf
                sys.stdout.write(
                    "\riter: {:d} | nc: {:d} | ncall: {:d} | eff(%): {:6.3f} | "
                    "logz: {:6.3f} +/- {:6.3f} | dlogz: {:6.3f} > {:6.3f}      "
                    .format(nit + it2, nc, ncall, eff, logz, logzerr,
                            delta_logz, delta_logz_final))

                sys.stdout.flush()

        self.outff.close()
        sys.stdout.write('\n')

        finishtime = datetime.now()
        if self.verbose:
            print('RUN TIME: {0}'.format(finishtime - starttime))

        return dy_sampler
コード例 #20
0
    # global print_number
    # if print_number < 100:
    #     print_number += 1
    #     print('parameter values:', x)
    return x

# plot = True

from multiprocessing import Pool

ndim = len(theta_h2o)
full_results = []
with Pool() as pool:
    for transit_data in noisey_transit_depth:
        sampler = dynesty.NestedSampler(log_likelihood_h2o, prior_trans, ndim,
                                        nlive=500, pool=pool, queue_size=pool._processes, logl_args=(transit_data, fixed_h2o))
        sampler.run_nested()
        full_results.append(sampler.results)

if plot:
    # make a plot of results
    labels = ["Rad_planet", "T", "log H2O"]
    truths = [rad_planet, T, log_fh2o]
    for result in full_results:

        fig, axes = dyplot.cornerplot(result, truths=truths, show_titles=True,
                                      title_kwargs={'y': 1.04}, labels=labels,
                                      fig=plt.subplots(len(truths), len(truths), figsize=(10, 10)))
        fig.suptitle('Red lines are true values', fontsize=14)
        # fig.savefig('/test/my_first_cornerplot.png')
コード例 #21
0
ifit = np.abs(imjdobs - t0_est) < 365
kfit = np.abs(kmjdobs - t0_est) < 365

model_kwargs = {
    'step': 0.02,
    't0': t0_est,
    'ra': ra,
    'dec': dec,
    'motion_mode': 'parallactic',
    'occulter_mode': 'solid',
}
ecl_model_V = model_eclipse(mjd_points=vmjdobs[vfit], mu=1.20, **model_kwargs)
ecl_model_I = model_eclipse(mjd_points=imjdobs[ifit], mu=1.10, **model_kwargs)
ecl_model_K = model_eclipse(mjd_points=kmjdobs[kfit], mu=1.05, **model_kwargs)

with Pool(processes=nproc) as pool:
    dsampler = dynesty.NestedSampler(
        lnprob,
        prior_transform,
        ndim=11,
        periodic=[7],
        pool=pool,
        queue_size=nproc,
        logl_args=[[ecl_model_V, ecl_model_I, ecl_model_K],
                   [vflux[vfit], iflux[ifit], kflux[kfit]],
                   [vflux_error[vfit], iflux_error[ifit], kflux_error[kfit]]])
    dsampler.run_nested()
dres = dsampler.results

pickle.dump(dres, open("dres_advanced_solid_corner.p", "wb"))
コード例 #22
0
def fit_source(ra=53.115295, dec=-27.803501, dofit=True, nlive=100):

    # --- Build the postage stamp ----
    ra_init, dec_init = ra, dec
    pos_init = (ra_init, dec_init)
    stamps = [
        make_stamp(im,
                   pos_init,
                   center_type='celestial',
                   size=(50, 50),
                   psfname=psfname) for im in imnames
    ]

    # override the psf to reflect in both directions
    T = -1.0 * np.eye(2)
    for s in stamps:
        s.psf.covariances = np.matmul(T, np.matmul(s.psf.covariances, T.T))
        s.psf.means = np.matmul(s.psf.means, T)

    # --- get the Scene ---
    source = Star(filters=["F090W"])
    scene = Scene([source])
    label = ['Counts', 'RA', 'Dec']

    plans = [WorkPlan(stamp) for stamp in stamps]
    lnlike = argfix(lnlike_multi, scene=scene, plans=plans, grad=False)

    # --- Initialize ---
    theta_init = np.array(
        [stamps[0].pixel_values.sum() * 1.0, ra_init, dec_init])
    # a rough measure of dcoordinate/dpix
    plate_scale, _ = np.linalg.eig(np.linalg.inv(stamps[0].dpix_dsky))
    # make the prior ~10 pixels wide, and 50% of counts
    theta_width = np.array(
        [0.5 * theta_init[0], 10 * plate_scale[0], 10 * plate_scale[1]])
    #print(theta_init, theta_width)

    # --- Nested sampling ---
    ndim = 3

    def prior_transform(unit_coords):
        # convert to uniform -1 to 1
        u = (2 * unit_coords - 1.)
        # now scale and shift
        theta = theta_init + theta_width * u
        return theta

    if dofit:
        import dynesty, time

        # "Standard" nested sampling.
        sampler = dynesty.NestedSampler(lnlike,
                                        prior_transform,
                                        ndim,
                                        nlive=nlive,
                                        bootstrap=0)
        t0 = time.time()
        sampler.run_nested()
        dur = time.time() - t0
        results = sampler.results
        results['duration'] = dur
        indmax = results['logl'].argmax()
        theta_max = results['samples'][indmax, :]

    else:
        results = None
        theta_max = np.zeros(3)
        stamps = None

    return results, theta_max, stamps, scene
コード例 #23
0
    PC= Full_scale(Gs, Pmfl)

    Gchi, Pchi = Full_fit(Gs, PC * Gmfl, PC * Pmfl)
                  
    return -0.5 * (Gchi + Pchi)

##############              ############
############## redshift run ############
sp = fsps.StellarPopulation(imf_type = 2, tpagb_norm_type=0, zcontinuous = 1, logzsol = np.log10(1), sfh = 4, tau = 0.1)

Gs = Gen_spec(field, galaxy, 1, g102_lims=[8300, 11288], g141_lims=[11288, 16500],mdl_err = False,
            phot_errterm = 0.03, decontam = True) 

wvs, flxs, errs, beams, trans = Gather_grism_data(Gs)

zsampler = dynesty.NestedSampler( rshift_loglikelihood, rshift_prior, ndim = 5, sample = 'rwalk', bound = 'balls') 
zsampler.run_nested(print_progress=False)
zres = zsampler.results

t,pt = Get_posterior(zres.samples[:,3 ],zres.logwt,zres.logz)

specz = t[pt == max(pt)][0]
agelim = Oldest_galaxy(specz)
LBT = Time_bins(agelim)

##############             ############
############## bestfit run ############
sp = fsps.StellarPopulation(imf_type = 2, tpagb_norm_type=0, zcontinuous = 1, logzsol = np.log10(1), sfh = 3, dust_type = 1)

Gs = Gen_spec(field, galaxy, 1, g102_lims=[8300, 11288], g141_lims=[11288, 16500],mdl_err = False,
            phot_errterm = 0.0, decontam = True) 
コード例 #24
0
def ns_fit(datadir):

    #::: init
    config.init(datadir)

    #::: show initial guess
    show_initial_guess()

    #::: settings
    nlive = config.BASEMENT.settings[
        'ns_nlive']  # (default 500) number of live points
    bound = config.BASEMENT.settings[
        'ns_bound']  # (default 'single') use MutliNest algorithm for bounds
    ndim = config.BASEMENT.ndim  # number of parameters
    sample = config.BASEMENT.settings[
        'ns_sample']  # (default 'auto') random walk sampling
    tol = config.BASEMENT.settings[
        'ns_tol']  # (defualt 0.01) the stopping criterion

    #::: run
    if config.BASEMENT.settings['ns_modus'] == 'static':
        logprint('\nRunning Static Nested Sampler...')
        logprint('--------------------------')
        t0 = timer()

        if config.BASEMENT.settings['multiprocess']:
            with closing(
                    Pool(processes=(config.BASEMENT.
                                    settings['multiprocess_cores']))) as pool:
                logprint('\nRunning on',
                         config.BASEMENT.settings['multiprocess_cores'],
                         'CPUs.')
                sampler = dynesty.NestedSampler(
                    ns_lnlike,
                    ns_prior_transform,
                    ndim,
                    pool=pool,
                    queue_size=config.BASEMENT.settings['multiprocess_cores'],
                    bound=bound,
                    sample=sample,
                    nlive=nlive)
                sampler.run_nested(dlogz=tol, print_progress=True)

        else:
            sampler = dynesty.NestedSampler(ns_lnlike,
                                            ns_prior_transform,
                                            ndim,
                                            bound=bound,
                                            sample=sample,
                                            nlive=nlive)
            sampler.run_nested(dlogz=tol, print_progress=True)

        t1 = timer()
        timedynesty = (t1 - t0)
        logprint("\nTime taken to run 'dynesty' (in static mode) is {} hours".
                 format(int(timedynesty / 60. / 60.)))

    elif config.BASEMENT.settings['ns_modus'] == 'dynamic':
        logprint('\nRunning Dynamic Nested Sampler...')
        logprint('--------------------------')
        t0 = timer()

        if config.BASEMENT.settings['multiprocess']:
            with closing(
                    Pool(processes=config.BASEMENT.
                         settings['multiprocess_cores'])) as pool:
                logprint('\nRunning on',
                         config.BASEMENT.settings['multiprocess_cores'],
                         'CPUs.')
                sampler = dynesty.DynamicNestedSampler(
                    ns_lnlike,
                    ns_prior_transform,
                    ndim,
                    pool=pool,
                    queue_size=config.BASEMENT.settings['multiprocess_cores'],
                    bound=bound,
                    sample=sample)
                sampler.run_nested(nlive_init=nlive,
                                   dlogz_init=tol,
                                   print_progress=True)

        else:
            sampler = dynesty.DynamicNestedSampler(ns_lnlike,
                                                   ns_prior_transform,
                                                   ndim,
                                                   bound=bound,
                                                   sample=sample)
            sampler.run_nested(nlive_init=nlive, print_progress=True)

        t1 = timer()
        timedynestydynamic = (t1 - t0)
        logprint("\nTime taken to run 'dynesty' (in dynamic mode) is {} hours".
                 format(int(timedynestydynamic / 60. / 60.)))

    #::: pickle-save the 'results' class
    results = sampler.results
    with open(os.path.join(config.BASEMENT.outdir, 'save_ns.pickle'),
              'wb') as f:
        pickle.dump(results, f)
コード例 #25
0
ファイル: fitstar.py プロジェクト: pacargile/MINESweeper
     def _runsampler(self,samplerdict):
          # pull out user defined sampler variables
          npoints = samplerdict.get('npoints',200)
          samplertype = samplerdict.get('samplerbounds','multi')
          bootstrap = samplerdict.get('bootstrap',0)
          update_interval = samplerdict.get('update_interval',0.6)
          samplemethod = samplerdict.get('samplemethod','unif')
          delta_logz_final = samplerdict.get('delta_logz_final',0.01)
          flushnum = samplerdict.get('flushnum',10)
          numslice = samplerdict.get('slices',5)
          numwalks = samplerdict.get('walks',25)
          reflective_list = samplerdict.get('reflective',[])

          # calc index of reflective prior par
          reflective = []
          for ii,par in enumerate(self.likeobj.fitpars_i):
               if self.fitpars_bool[par] and (par in reflective_list):
                    reflective.append(ii)
          try:
               # Python 2.x
               maxiter = samplerdict.get('maxiter',sys.maxint)
          except AttributeError:
               # Python 3.x
               maxiter = samplerdict.get('maxiter',sys.maxsize)

          try:
               # Python 2.x
               maxcall = samplerdict.get('maxcall',sys.maxint)
          except AttributeError:
               # Python 3.x
               maxcall = samplerdict.get('maxcall',sys.maxsize)

          n_effective = samplerdict.get('n_effective',np.inf)


          if samplemethod == 'rwalk':
               numws = numwalks
          elif samplemethod == 'slice':
               numws = numslice
          else:
               numws = numwalks
          # set start time
          starttime = datetime.now()
          if self.verbose:
               print(
                    'Static Dynesty w/ {0} sampler, {1} walks/slices, {2} number of samples, Ndim = {3}, and w/ stopping criteria of dlog(z) = {4}: {5}'.format(
                         samplemethod,numws,npoints,self.ndim,delta_logz_final,starttime))
               print('Max Iter: {0} / Max Call: {1}'.format(maxiter,maxcall))
          sys.stdout.flush()

          # initialize sampler object
          dy_sampler = dynesty.NestedSampler(
               lnprobfn,
               self.priorobj.priortrans,
               self.ndim,
               logl_args=[self.likeobj,self.priorobj],
               nlive=npoints,
               bound=samplertype,
               sample=samplemethod,
               # update_interval=update_interval,
               bootstrap=bootstrap,
               walks=numwalks,
               slices=numslice,
               # reflective=reflective,
               # update_interval=10,
               # first_update={'min_eff':5.0,'min_ncall':1000},
               # vol_dec=4.0,
               # vol_check=0.1,
               )
          sys.stdout.flush()

          ncall = 0
          nit = 0

          iter_starttime = datetime.now()
          deltaitertime_arr = []

          # start sampling
          print('Start Sampling @ {}'.format(iter_starttime))
          for it, results in enumerate(dy_sampler.sample(
               dlogz=delta_logz_final,
               maxiter=maxiter,
               maxcall=maxcall,
               )):
               (worst, ustar, vstar, loglstar, logvol, logwt, logz, logzvar,
                    h, nc, worst_it, propidx, propiter, eff, delta_logz) = results             

               if it == 0:
                    # initialize the output file
                    parnames = self.likeobj.parsdict.keys()
                    self._initoutput(parnames)

               self.outff.write('{0} '.format(it))
               # self.outff.write(' '.join([str(q) for q in vstar]))
               try:
                    self.outff.write(
                         ' '.join(
                              [str(self.likeobj.parsdict[q]) 
                              if (isinstance(self.likeobj.parsdict[q],float) or isinstance(self.likeobj.parsdict[q],int)) 
                              else 'nan' for q in parnames]))
               except:
                    print('Sampling broke')
                    print('worst:',worst)
                    print('ustar:',ustar)
                    print('vstar:',vstar)
                    print('loglstar:',loglstar)
                    print('logvol:',logvol)
                    print('logwt:',logwt)
                    print('logz:',logz)
                    print('logzvar:',logzvar)
                    print('h:',h)
                    print('nc:',nc)
                    print('worst_it:',worst_it)
                    print('propidx:',propidx)
                    print('propiter:',propiter)
                    print('eff:',eff)
                    print('delta_logz:',delta_logz)
                    print(self.likeobj.parsdict)
                    raise

               self.outff.write(' {0} {1} {2} {3} {4} {5} {6} '.format(
                    loglstar,logvol,logwt,h,nc,logz,delta_logz))
               self.outff.write('\n')

               ncall += nc
               nit = it

               deltaitertime_arr.append((datetime.now()-iter_starttime).total_seconds()/float(nc))
               iter_starttime = datetime.now()

               if ((it%flushnum) == 0) or (it == maxiter):
                    self.outff.flush()

                    if self.verbose:
                         # format/output results
                         if logz < -1e6:
                              logz = -np.inf
                         if delta_logz > 1e8:
                              delta_logz = np.inf
                         if logzvar > 0.:
                              logzerr = np.sqrt(logzvar)
                         else:
                              logzerr = np.nan
                         if logzerr > 1e8:
                              logzerr = np.inf

                         if loglstar < -1e6:
                              loglstar = -np.inf
                         try:
                              sys.stdout.write("\riter: {0:d} | nc: {1:d} | ncall: {2:d} | eff(%): {3:6.3f} | "
                                   "logz: {4:6.3f} +/- {5:6.3f} | loglk: {6:6.3f} | dlogz: {7:6.3f} > {8:6.3f}   | mean(time):  {9:7.5f} | time: {10} \n"
                                   .format(nit, nc, ncall, eff, 
                                        logz, logzerr, loglstar, delta_logz, delta_logz_final,np.mean(deltaitertime_arr),datetime.now()))
                         except:
                              print(nit, nc, ncall, eff, logz, logzerr)
                         sys.stdout.flush()
                         deltaitertime_arr = []
               if (it == maxiter):
                    break

          print('Add live points to output file')

          # add live points to sampler object
          for it2, results in enumerate(dy_sampler.add_live_points()):
               # split up results
               (worst, ustar, vstar, loglstar, logvol, logwt, logz, logzvar,
               h, nc, worst_it, boundidx, bounditer, eff, delta_logz) = results

               self.outff.write('{0} '.format(nit+it2))

               # self.outff.write(' '.join([str(q) for q in vstar]))
               self.likeobj.lnlikefn(vstar)
               self.outff.write(
                    ' '.join(
                         [str(self.likeobj.parsdict[q]) 
                         if (isinstance(self.likeobj.parsdict[q],float) or isinstance(self.likeobj.parsdict[q],int)) 
                         else 'nan' for q in parnames]))

               # self.outff.write(' '.join([str(self.likeobj.parsdict[q]) for q in parnames]))
               self.outff.write(' {0} {1} {2} {3} {4} {5} {6} '.format(
                    loglstar,logvol,logwt,h,nc,logz,delta_logz))
               self.outff.write('\n')

               ncall += nc

               if self.verbose:
                    # format/output results
                    if logz < -1e6:
                         logz = -np.inf
                    if delta_logz > 1e6:
                         delta_logz = np.inf
                    if logzvar > 0.:
                         logzerr = np.sqrt(logzvar)
                    else:
                         logzerr = np.nan
                    if logzerr > 1e6:
                         logzerr = np.inf
                    sys.stdout.write("\riter: {:d} | nc: {:d} | ncall: {:d} | eff(%): {:6.3f} | "
                         "logz: {:6.3f} +/- {:6.3f} | dlogz: {:6.3f} > {:6.3f}      "
                         .format(nit + it2, nc, ncall, eff, 
                              logz, logzerr, delta_logz, delta_logz_final))

                    sys.stdout.flush()

          self.outff.close()
          sys.stdout.write('\n')

          finishtime = datetime.now()
          if self.verbose:
               print('RUN TIME: {0}'.format(finishtime-starttime))

          return dy_sampler
コード例 #26
0
ファイル: sed_fitter.py プロジェクト: vedantchandra/WD_models
    def fit(self,
            sed,
            e_sed,
            parallax=[100, 0.001],
            nlive=250,
            distance=None,
            binary=False,
            plot_fit=True,
            plot_trace=False,
            plot_corner=False,
            progress=False,
            textx=0.025,
            textsize=12):

        if self.to_flux:
            sed = self.mag_to_flux(sed)
            e_sed = sed * e_sed  # magnitude error to flux error

        if not binary:
            ndim = 3

            def loglike(theta):
                teff, logg, plx = theta
                model = self.model_sed(teff, logg, plx)
                ivar = 1 / e_sed**2
                logchi = -0.5 * np.sum((sed - model)**2 * ivar)
                if np.isnan(logchi):
                    return -np.Inf
                else:
                    return logchi

            def prior_transform(u):
                x = np.array(u)
                x[0] = u[0] * (self.teff_range[1] -
                               self.teff_range[0]) + self.teff_range[0]
                x[1] = u[1] * (self.logg_range[1] -
                               self.logg_range[0]) + self.logg_range[0]
                t = stats.norm.ppf(u[2])
                x[2] = parallax[1] * t
                x[2] += parallax[0]
                return x

        elif binary:
            ndim = 5

            def loglike(theta):
                teff1, logg1, teff2, logg2, plx = theta

                model = self.model_binary_sed(teff1, logg1, teff2, logg2, plx)

                ivar = 1 / e_sed**2
                logchi = -0.5 * np.sum((sed - model)**2 * ivar)
                if np.isnan(logchi):
                    return -np.Inf
                elif teff1 > teff2:
                    return -np.Inf
                else:
                    return logchi

            def prior_transform(u):
                x = np.array(u)
                x[0] = u[0] * (self.teff_range[1] -
                               self.teff_range[0]) + self.teff_range[0]
                x[1] = u[1] * (self.logg_range[1] -
                               self.logg_range[0]) + self.logg_range[0]
                x[2] = u[2] * (self.teff_range[1] -
                               self.teff_range[0]) + self.teff_range[0]
                x[3] = u[3] * (self.logg_range[1] -
                               self.logg_range[0]) + self.logg_range[0]
                t = stats.norm.ppf(u[4])
                x[4] = parallax[1] * t
                x[4] += parallax[0]
                return x

        ########## DYNESTY ###################

        dsampler = dynesty.NestedSampler(loglike,
                                         prior_transform,
                                         ndim=ndim,
                                         nlive=nlive)
        dsampler.run_nested(print_progress=progress)

        result = dsampler.results

        samples, weights = result.samples, np.exp(result.logwt -
                                                  result.logz[-1])
        chis = -2 * np.array([loglike(sample) for sample in result.samples])
        bestfit = np.argmin(chis)
        resampled = dyfunc.resample_equal(samples, weights)
        cov = np.var(resampled, axis=0)

        mean = result.samples[bestfit]

        print(result.samples[bestfit])

        bandwls = []
        for band in self.bands:
            bandwls.append(self.mean_wl[band])

        ########## PLOTTING #################

        if plot_trace:

            f = dyplot.traceplot(dsampler.results,
                                 show_titles=True,
                                 trace_cmap='viridis')
            plt.tight_layout()
        if plot_corner:

            if binary:
                f = dyplot.cornerplot(dsampler.results,
                                      show_titles=True,
                                      labels=[
                                          '$T_{\mathrm{eff,1}}$',
                                          '$\log{g}_1$',
                                          '$T_{\mathrm{eff,2}}$',
                                          '$\log{g}_2$', r'$\varpi$'
                                      ])
            if not binary:
                f = dyplot.cornerplot(
                    dsampler.results,
                    show_titles=True,
                    labels=['$T_{\mathrm{eff}}$', '$\log{g}$', r'$\varpi$'])

            plt.tight_layout()

        if not binary:

            model = self.model_sed(*mean)
            ivar = 1 / e_sed**2
            redchi = np.sum((sed - model)**2 * ivar) / (len(sed) - ndim)

            if plot_fit:

                plt.figure(figsize=(10, 5))
                plt.errorbar(bandwls,
                             sed,
                             yerr=e_sed,
                             linestyle='none',
                             capsize=5,
                             color='k')
                plt.scatter(bandwls, model, color='k')
                plt.text(textx,
                         0.35,
                         '$T_{\mathrm{eff}}$ = %i ± %i' %
                         (mean[0], np.sqrt(cov[0])),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.text(textx,
                         0.25,
                         '$\log{g}$ = %.2f ± %.2f' %
                         (mean[1], np.sqrt(cov[1])),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.text(textx,
                         0.15,
                         'atm = %s' % (self.atm_type),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.text(textx,
                         0.05,
                         '$\chi_r^2$ = %.2f' % (redchi),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.xlabel('Wavelength ($\mathrm{\AA}$', fontsize=16)
                plt.ylabel(
                    '$f_\lambda\ [erg\ cm^{-2}\ s^{-1}\ \mathrm{\AA}^{-1}]$',
                    fontsize=16)
                plt.yscale('log')

            return [mean[0], np.sqrt(cov[0]), mean[1], np.sqrt(cov[1])], redchi

        elif binary:

            model = self.model_binary_sed(*mean)

            ivar = 1 / e_sed**2
            redchi = np.sum((sed - model)**2 * ivar) / (len(sed) - ndim)

            if plot_fit:

                plt.figure(figsize=(10, 5))
                plt.errorbar(bandwls,
                             sed,
                             yerr=e_sed,
                             linestyle='none',
                             capsize=5,
                             color='k')
                plt.scatter(bandwls, model, color='k')
                plt.text(textx,
                         0.45,
                         '$T_{\mathrm{eff,1}}$ = %i ± %i' %
                         (mean[0], np.sqrt(cov[0])),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.text(textx,
                         0.35,
                         '$\log{g}_1$ = %.2f ± %.2f' %
                         (mean[1], np.sqrt(cov[1])),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.text(textx,
                         0.25,
                         '$T_{\mathrm{eff,2}}$ = %i ± %i' %
                         (mean[2], np.sqrt(cov[2])),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.text(textx,
                         0.15,
                         '$\log{g}_2$ = %.2f ± %.2f' %
                         (mean[3], np.sqrt(cov[3])),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                #plt.text(0.15, 0.2, 'atm = %s' %(self.atm_type), transform = plt.gca().transAxes, fontsize = 12)
                plt.text(textx,
                         0.05,
                         '$\chi_r^2$ = %.2f' % (redchi),
                         transform=plt.gca().transAxes,
                         fontsize=textsize)
                plt.xlabel('Wavelength ($\mathrm{\AA}$)', fontsize=16)
                plt.ylabel(
                    '$f_\lambda\ [erg\ cm^{-2}\ s^{-1}\ \mathrm{\AA}^{-1}]$',
                    fontsize=16)
                plt.yscale('log')

            return [
                mean[0],
                np.sqrt(cov[0]), mean[1],
                np.sqrt(cov[1]), mean[2],
                np.sqrt(cov[2]), mean[3],
                np.sqrt(cov[3])
            ], redchi
コード例 #27
0
    def run_sampler(self):
        import dynesty
        import dill
        logger.info("Using dynesty version {}".format(dynesty.__version__))

        if self.kwargs.get("sample", "rwalk") == "rwalk":
            logger.info(
                "Using the bilby-implemented rwalk sample method with ACT estimated walks")
            dynesty.dynesty._SAMPLING["rwalk"] = sample_rwalk_bilby
            dynesty.nestedsamplers._SAMPLING["rwalk"] = sample_rwalk_bilby
            if self.kwargs.get("walks") > self.kwargs.get("maxmcmc"):
                raise DynestySetupError("You have maxmcmc > walks (minimum mcmc)")
            if self.kwargs.get("nact", 5) < 1:
                raise DynestySetupError("Unable to run with nact < 1")
        elif self.kwargs.get("sample") == "rwalk_dynesty":
            self._kwargs["sample"] = "rwalk"
            logger.info(
                "Using the dynesty-implemented rwalk sample method")
        elif self.kwargs.get("sample") == "rstagger_dynesty":
            self._kwargs["sample"] = "rstagger"
            logger.info(
                "Using the dynesty-implemented rstagger sample method")

        self._setup_pool()

        if self.resume:
            self.resume = self.read_saved_state(continuing=True)

        if self.resume:
            logger.info('Resume file successfully loaded.')
        else:
            if self.kwargs['live_points'] is None:
                self.kwargs['live_points'] = (
                    self.get_initial_points_from_prior(self.kwargs['nlive'])
                )
            self.sampler = dynesty.NestedSampler(
                loglikelihood=_log_likelihood_wrapper,
                prior_transform=_prior_transform_wrapper,
                ndim=self.ndim, **self.sampler_init_kwargs
            )

        if self.check_point:
            out = self._run_external_sampler_with_checkpointing()
        else:
            out = self._run_external_sampler_without_checkpointing()

        self._close_pool()

        # Flushes the output to force a line break
        if self.kwargs["print_progress"] and self.kwargs["print_method"] == "tqdm":
            self.pbar.close()
            print("")

        check_directory_exists_and_if_not_mkdir(self.outdir)

        if self.nestcheck:
            self.nestcheck_data(out)

        dynesty_result = "{}/{}_dynesty.pickle".format(self.outdir, self.label)
        with open(dynesty_result, 'wb') as file:
            dill.dump(out, file)

        self._generate_result(out)
        self.result.sampling_time = self.sampling_time

        if self.plot:
            self.generate_trace_plots(out)

        return self.result
コード例 #28
0
def test_norstate():
    # test it can work without rstate
    ndim = 2
    dynesty.NestedSampler(loglike, prior_transform, ndim, nlive=nlive)

    dynesty.DynamicNestedSampler(loglike, prior_transform, ndim, nlive=nlive)
コード例 #29
0
ファイル: dynesty.py プロジェクト: josh-willis/pycbc
    def __init__(self,
                 model,
                 nlive,
                 nprocesses=1,
                 checkpoint_time_interval=None,
                 maxcall=None,
                 loglikelihood_function=None,
                 use_mpi=False,
                 no_save_state=False,
                 run_kwds=None,
                 extra_kwds=None,
                 internal_kwds=None,
                 **kwargs):

        self.model = model
        self.no_save_state = no_save_state
        log_likelihood_call, prior_call = setup_calls(
            model,
            loglikelihood_function=loglikelihood_function,
            copy_prior=True)
        # Set up the pool
        self.pool = choose_pool(mpi=use_mpi, processes=nprocesses)

        self.maxcall = maxcall
        self.checkpoint_time_interval = checkpoint_time_interval
        self.run_kwds = {} if run_kwds is None else run_kwds
        self.extra_kwds = {} if extra_kwds is None else extra_kwds
        self.internal_kwds = {} if internal_kwds is None else internal_kwds
        self.nlive = nlive
        self.names = model.sampling_params
        self.ndim = len(model.sampling_params)
        self.checkpoint_file = None
        # Enable checkpointing if checkpoint_time_interval is set in config
        # file in sampler section
        if self.checkpoint_time_interval:
            self.run_with_checkpoint = True
            if self.maxcall is None:
                self.maxcall = 5000 * self.pool.size
            logging.info(
                "Checkpointing enabled, will verify every %s calls"
                " and try to checkpoint every %s seconds", self.maxcall,
                self.checkpoint_time_interval)
        else:
            self.run_with_checkpoint = False

        # Check for cyclic boundaries
        periodic = []
        cyclic = self.model.prior_distribution.cyclic
        for i, param in enumerate(self.variable_params):
            if param in cyclic:
                logging.info('Param: %s will be cyclic', param)
                periodic.append(i)

        if len(periodic) == 0:
            periodic = None

        # Check for reflected boundaries. Dynesty only supports
        # reflection on both min and max of boundary.
        reflective = []
        reflect = self.model.prior_distribution.well_reflected
        for i, param in enumerate(self.variable_params):
            if param in reflect:
                logging.info("Param: %s will be well reflected", param)
                reflective.append(i)

        if len(reflective) == 0:
            reflective = None

        if 'sample' in extra_kwds:
            if 'rwalk2' in extra_kwds['sample']:
                dynesty.dynesty._SAMPLING["rwalk"] = sample_rwalk_mod
                dynesty.nestedsamplers._SAMPLING["rwalk"] = sample_rwalk_mod
                extra_kwds['sample'] = 'rwalk'

        if self.nlive < 0:
            # Interpret a negative input value for the number of live points
            # (which is clearly an invalid input in all senses)
            # as the desire to dynamically determine that number
            self._sampler = dynesty.DynamicNestedSampler(log_likelihood_call,
                                                         prior_call,
                                                         self.ndim,
                                                         pool=self.pool,
                                                         reflective=reflective,
                                                         periodic=periodic,
                                                         **extra_kwds)
            self.run_with_checkpoint = False
            logging.info("Checkpointing not currently supported with"
                         "DYNAMIC nested sampler")
        else:
            self._sampler = dynesty.NestedSampler(log_likelihood_call,
                                                  prior_call,
                                                  self.ndim,
                                                  nlive=self.nlive,
                                                  reflective=reflective,
                                                  periodic=periodic,
                                                  pool=self.pool,
                                                  **extra_kwds)
        self._sampler.kwargs.update(internal_kwds)

        # properties of the internal sampler which should not be pickled
        self.no_pickle = [
            'loglikelihood', 'prior_transform', 'propose_point',
            'update_proposal', '_UPDATE', '_PROPOSE', 'evolve_point',
            'use_pool', 'queue_size', 'use_pool_ptform', 'use_pool_logl',
            'use_pool_evolve', 'use_pool_update', 'pool', 'M'
        ]
コード例 #30
0
    def run_dynesty(self, data_to_fit, lnprob, nlive=200, bound='multi',
                    sample='auto', maxiter=None, maxcall=None, dlogz=None,
                    filepath='output.csv', **dynesty_kwargs):
        '''
        Runs nested sampling retrieval through Dynesty using the Classifier
        to inform priors

        Parameters
        ----------
        data_to_fit : array_like, shape (X,)
            The data you want to fit. Required for classification purposes.
        lnprob : function
            A function which must be passed a set of parameters and returns
            their ln likelihood. Signature should be `lnprob(params)` where
            params is an array with shape (n_variables, ). Note that you will
            need to have hard-coded the data and associated uncertainties into
            the `lnprob` function.
        nlive : int, optional
            The number of live points to use in the nested sampling. Default is
            200.
        bound : str, optional
            Method used to approximately bound the prior using the current set
            of live points. Conditions the sampling methods used to propose new
            live points. Choices are no bound ('none'), a single bounding
            ellipsoid ('single'), multiple bounding ellipsoids ('multi'), balls
            centered on each live point ('balls'), and cubes centered on each
            live point ('cubes'). Default is 'multi'.
        sample : str, optional
            Method used to sample uniformly within the likelihood constraint,
            conditioned on the provided bounds. Unique methods available are:
            uniform sampling within the bounds('unif'), random walks with fixed
            proposals ('rwalk'), random walks with variable (“staggering”)
            proposals ('rstagger'), multivariate slice sampling along preferred
            orientations ('slice'), “random” slice sampling along all
            orientations ('rslice'), and “Hamiltonian” slices along random
            trajectories ('hslice'). 'auto' selects the sampling method based
            on the dimensionality of the problem (from ndim). When ndim < 10,
            this defaults to 'unif'. When 10 <= ndim <= 20, this defaults to
            'rwalk'. When ndim > 20, this defaults to 'hslice' if a gradient is
            provided and 'slice' otherwise. 'rstagger' and 'rslice' are
            provided as alternatives for 'rwalk' and 'slice', respectively.
            Default is 'auto'.
        maxiter : int or None, optional
            The maximum number of iterations to run. If None, will run until
            stopping criterion is met. Default is None.
        maxcall : int or None, optional
            If not None, sets the maximum number of calls to the likelihood
            function. Default is None.
        **dynesty_kwargs : optional
            kwargs to be passed to the dynesty.NestedSampler() initialisation

        Returns
        -------
        results : dict
            The dynesty results dictionary, with the addition of the following
            attributes:
            weights - normalised weights for each sample
            cov - the covariance matrix
            uncertainties - the uncertainty on each fitted parameter,
                calculated from the square root of the diagonal of the
                covariance matrix.
        '''

        # First up, we need to define some variables for the Retriever
        # Number of dimensions we are retrieving
        n_dims = self.classifier.n_variables + self.n_nuisance

        # Make the prior transform function
        prior_transform = self.classifier.create_dynesty_prior_transform(
            data_to_fit, self.n_nuisance, self.nuisance_limits)

        # Set up and run the sampler here!!
        sampler = dynesty.NestedSampler(lnprob, prior_transform,
                                n_dims, bound=bound, sample=sample,
                                update_interval=float(n_dims), nlive=nlive,
                                **dynesty_kwargs)

        sampler.run_nested(maxiter=maxiter, maxcall=maxcall, dlogz=dlogz)

        results = sampler.results

        # Get some normalised weights
        results.weights = np.exp(results.logwt - results.logwt.max()) / \
            np.sum(np.exp(results.logwt - results.logwt.max()))

        # Calculate a covariance matrix for these results to get uncertainties
        cov = np.cov(results.samples, rowvar=False, aweights=results.weights)

        # Get the uncertainties from the diagonal of the covariance matrix
        diagonal = np.diag(cov)
        uncertainties = np.sqrt(diagonal)

        # Add the covariance matrix and uncertainties to the results object
        results.cov = cov
        results.uncertainties = uncertainties

        self._print_best(results)
        self._save_results(results, filepath)


        return results