コード例 #1
0
ファイル: perceptron_test.py プロジェクト: ren98feng/antu
    def test_perceptron(self):
        pc = dy.ParameterCollection()
        init = OrthogonalInitializer
        mlp = MLP(pc, [10, 8, 5], init=init)
        x = dy.random_normal((10,))
        y = mlp(x, True)
        assert y.dim() == ((5,), 1)

        mlp_batch = MLP(pc, [10, 8, 5], p=0.5, init=init)
        x = dy.random_normal((10,), batch_size=5)
        y = mlp_batch(x, True)
        assert y.dim() == ((5,), 5)
コード例 #2
0
ファイル: linear_test.py プロジェクト: ren98feng/antu
    def test_linear(self):
        pc = dy.ParameterCollection()
        init = OrthogonalInitializer
        affine = Linear(pc, in_dim=10, out_dim=5, bias=True, init=init)
        x = dy.random_normal((10, ))
        y = affine(x)
        assert y.dim() == ((5, ), 1)

        init = dy.ConstInitializer(1)
        affine = Linear(pc, in_dim=10, out_dim=1, bias=False, init=init)
        x = dy.random_normal((10, ))
        y = affine(x)
        assert math.fabs(np.sum(y.npvalue()) - np.sum(x.npvalue())) < 1e-6
コード例 #3
0
 def reparameterize(self, mu, logvar):
     if self.training:
         std = dy.exp(logvar * 0.5)
         eps = dy.random_normal(dim=std.dim()[0], mean=0.0, stddev=1.0)
         return dy.cmult(eps, std) + mu
     else:
         return mu
コード例 #4
0
ファイル: vae-lm.py プロジェクト: ariasjose/nn4nlp-code
def reparameterize(mu, logvar):
    # Get z by reparameterization.
    d = mu.dim()[0][0]
    eps = dy.random_normal(d)
    std = dy.exp(logvar * 0.5)

    return mu + dy.cmult(std, eps)
コード例 #5
0
ファイル: vae.py プロジェクト: danielhers/cnn
 def reparameterize(self, mu, logvar):
     if self.training:
         std = dy.exp(logvar * 0.5)
         eps = dy.random_normal(dim=std.dim()[0], mean=0.0, stddev=1.0)
         return dy.cmult(eps, std) + mu
     else:
         return mu
コード例 #6
0
ファイル: vae-lm.py プロジェクト: aiedward/nn4nlp-code
def reparameterize(mu, logvar):
    # Get z by reparameterization.
    d = mu.dim()[0][0]
    eps = dy.random_normal(d)
    std = dy.exp(logvar * 0.5)

    return mu + dy.cmult(std, eps)
コード例 #7
0
    def test_DeepBiRNNBuilder(self):
        pc = dy.ParameterCollection()

        ENC = DeepBiRNNBuilder(pc, 2, 50, 20, orthonormal_VanillaLSTMBuilder)
        x = [dy.random_normal((50, )) for _ in range(10)]
        y = ENC(x, p_x=0.33, p_h=0.33, train=True)
        assert len(y) == 10
        assert y[0].dim() == ((40, ), 1)
コード例 #8
0
 def reparameterize(self, mu, logvar):
   d = mu.dim()[0][0]
   eps = dy.random_normal(d)
   std = dy.exp(logvar * 0.5)
   return mu + dy.cmult(std, eps)
コード例 #9
0
def reparameterize(mu, log_sigma_squared):
    d = mu.dim()[0][0]
    sample = dy.random_normal(d)
    covar = dy.exp(log_sigma_squared * 0.5)

    return mu + dy.cmult(covar, sample)