コード例 #1
0
        return {'status_1': {node: node_update}}

    def update_2():
        s2 = model.get_state('status_2') + 0.1
        return {'status_2': s2}

    update_cfg = UpdateConfiguration({
        'arguments': {},  # No other arguments
        'get_nodes': True,  # We want the nodes as argument
        'update_type': UpdateType.STATE
    })
    u = Update(update_1, update_cfg
               )  # Create an Update object that contains the object function
    # Create a scheme with the correct sample function, parameters, bounds, and update function
    model.add_scheme(
        Scheme(
            sample_state_weighted, {
                'args': {
                    'graph': model.graph
                },
                'lower_bound': 2,
                'upper_bound': 3,
                'updates': [u]
            }))

    # Add update 2 to the model, which will increase status_1 by 0.5 each iteration
    model.add_update(update_2)

    model.set_initial_state(initial_state)
    output = model.simulate(5)
    print(output)
コード例 #2
0
ファイル: HIOM.py プロジェクト: Tensaiz/DyNSimF
    model.set_states(['I', 'A', 'O'])

    update_cfg = UpdateConfiguration({
        'arguments': {
            'constants': model.constants
        },
        'get_nodes': True
    })
    up_I_A = Update(update_I_A, update_cfg)
    s_I = Update(shrink_I)
    s_A = Update(shrink_A)

    model.add_scheme(
        Scheme(sample_attention_weighted, {
            'args': {
                'graph': model.graph
            },
            'updates': [up_I_A]
        }))
    model.add_scheme(
        Scheme(lambda graph: graph.nodes, {
            'args': {
                'graph': model.graph
            },
            'lower_bound': 5000,
            'updates': [s_I]
        }))
    model.add_scheme(
        Scheme(lambda graph: graph.nodes, {
            'args': {
                'graph': model.graph
コード例 #3
0
class HIOM(Example):

    def __init__(self):
        n = 400

        g = nx.watts_strogatz_graph(n, 2, 0.02)

        cfg = {
            'utility': False,
        }
        self.model = Model(g, ModelConfiguration(cfg))

        constants = {
            'dt': 0.01,
            'A_min': -0.5,
            'A_star': 1,
            's_O': 0.01,
            's_I': 0,
            'd_A': 0,
            'p': 1,
            'r_min': 0,
            't_O': np.inf,
            'N': n
        }

        def initial_I(constants):
            return np.random.normal(0, 0.3, constants['N'])

        def initial_O(constants):
            return np.random.normal(0, 0.2, constants['N'])

        initial_state = {
            'I': initial_I,
            'O': initial_O,
            'A': 1
        }

        def update_I_A(nodes, constants):
            node = nodes[0]
            nb = np.random.choice(self.model.get_neighbors(node))
            if abs(self.model.get_node_state(node, 'O') - self.model.get_node_state(nb, 'O')) > constants['t_O']:
                return {'I': self.model.get_node_state(node, 'I')}
            else:
                # Update information
                r = constants['r_min'] + (1 - constants['r_min']) / (1 + np.exp(-1 * constants['p'] * (self.model.get_node_state(node, 'O') - self.model.get_node_state(nb, 'O'))))
                inf = r * self.model.get_node_state(node, 'I') + (1-r) * self.model.get_node_state(nb, 'I') + np.random.normal(0, constants['s_I'])

                # Update attention
                node_A = self.model.get_node_state(node, 'A') + constants['d_A'] * (2 * constants['A_star'] - self.model.get_node_state(node, 'A'))
                nb_A = self.model.get_node_state(nb, 'A') + constants['d_A'] * (2 * constants['A_star'] - self.model.get_node_state(nb, 'A'))
                return {'I': [inf], 'A': {node: node_A, nb: nb_A}}

        def update_A(constants):
            return {'A': self.model.get_state('A') - 2 * constants['d_A'] * self.model.get_state('A')/constants['N']}

        def update_O(constants):
            noise = np.random.normal(0, constants['s_O'], constants['N'])
            x = self.model.get_state('O') - constants['dt'] * (self.model.get_state('O')**3 - (self.model.get_state('A') + constants['A_min']) * self.model.get_state('O') - self.model.get_state('I')) + noise
            return {'O': x}

        def shrink_I():
            return {'I': self.model.get_state('I') * 0.999}

        def shrink_A():
            return {'A': self.model.get_state('A') * 0.999}

        def sample_attention_weighted(graph):
            probs = []
            A = self.model.get_state('A')
            factor = 1.0/sum(A)
            for a in A:
                probs.append(a * factor)
            return np.random.choice(graph.nodes, size=1, replace=False, p=probs)

        # Model definition
        self.model.constants = constants
        self.model.set_states(['I', 'A', 'O'])

        update_cfg = UpdateConfiguration({
            'arguments': {'constants': self.model.constants},
            'get_nodes': True
        })
        up_I_A = Update(update_I_A, update_cfg)
        s_I = Update(shrink_I)
        s_A = Update(shrink_A)

        self.model.add_scheme(Scheme(sample_attention_weighted, {'args': {'graph': self.model.graph}, 'updates': [up_I_A]}))
        self.model.add_scheme(Scheme(lambda graph: graph.nodes, {'args': {'graph': self.model.graph}, 'lower_bound': 5000, 'updates': [s_I]}))
        self.model.add_scheme(Scheme(lambda graph: graph.nodes, {'args': {'graph': self.model.graph}, 'lower_bound': 10000, 'updates': [s_A]}))
        self.model.add_update(update_A, {'constants': self.model.constants})
        self.model.add_update(update_O, {'constants': self.model.constants})

        self.model.set_initial_state(initial_state, {'constants': self.model.constants})

    def simulate(self, n):
        return self.model.simulate(n)

    def visualize(self, iterations):
        visualization_config = {
            'layout': 'fr',
            'plot_interval': 100,
            'plot_variable': 'O',
            'variable_limits': {
                'A': [0, 1],
                'O': [-1, 1],
                'I': [-1, 1]
            },
            'cmin': -1,
            'cmax': 1,
            'color_scale': 'RdBu',
            'show_plot': True,
            # 'plot_output': '../animations/HIOM.gif',
            'plot_title': 'HIERARCHICAL ISING OPINION MODEL',
        }

        self.model.configure_visualization(visualization_config, iterations)
        self.model.visualize('animation')
コード例 #4
0
    model.set_states(['I', 'A', 'O'])

    model.add_update(update, {'constants': model.constants})

    update_network_cfg = UpdateConfiguration({
        'arguments': {
            'constants': model.constants
        },
        'get_nodes': True,
        'update_type': UpdateType.NETWORK
    })
    update_network = Update(network_update, update_network_cfg)
    model.add_scheme(
        Scheme(sample_attention_weighted, {
            'args': {
                'graph': model.graph
            },
            'updates': [update_network]
        }))

    activism_update = Update(activism)
    model.add_scheme(
        Scheme(
            lambda graph: graph.nodes, {
                'args': {
                    'graph': model.graph
                },
                'lower_bound': 300,
                'upper_bound': 301,
                'updates': [activism_update]
            }))