def main(): """main executes the operations described in the module docstring""" lenet = LeNetDropout() mnist = MNIST() info = train(model=lenet, dataset=mnist, hyperparameters={"epochs": 1}) checkpoint_path = info["paths"]["best"] with tf.Session() as sess: # Define a new model, import the weights from best model trained # Change the input structure to use a placeholder images = tf.placeholder(tf.float32, shape=(None, 28, 28, 1), name="input_") # define in the default graph the model that uses placeholder as input _ = lenet.get(images, mnist.num_classes) # The best checkpoint path contains just one checkpoint, thus the last is the best saver = tf.train.Saver() saver.restore(sess, tf.train.latest_checkpoint(checkpoint_path)) # Create a builder to export the model builder = tf.saved_model.builder.SavedModelBuilder("export") # Tag the model in order to be capable of restoring it specifying the tag set builder.add_meta_graph_and_variables(sess, ["tag"]) builder.save() return 0
def main(): """main executes the operations described in the module docstring""" lenet = LeNetDropout() mnist = MNIST() info = train(model=lenet, dataset=mnist, hyperparameters={"epochs": 1}) checkpoint_path = info["paths"]["best"] with tf.Session() as sess: # Define a new model, import the weights from best model trained # Change the input structure to use a placeholder images = tf.placeholder( tf.float32, shape=(None, 28, 28, 1), name="input_") # define in the default graph the model that uses placeholder as input _ = lenet.get(images, mnist.num_classes) # The best checkpoint path contains just one checkpoint, thus the last is the best saver = tf.train.Saver() saver.restore(sess, tf.train.latest_checkpoint(checkpoint_path)) # Create a builder to export the model builder = tf.saved_model.builder.SavedModelBuilder("export") # Tag the model in order to be capable of restoring it specifying the tag set builder.add_meta_graph_and_variables(sess, ["tag"]) builder.save() return 0