コード例 #1
0
def l2_clipping_aware_rescaling(x,
                                delta,
                                eps: float,
                                a: float = 0.0,
                                b: float = 1.0):  # type: ignore
    """Calculates eta such that norm(clip(x + eta * delta, a, b) - x) == eps.

    Assumes x and delta have a batch dimension and eps, a, b, and p are
    scalars. If the equation cannot be solved because eps is too large, the
    left hand side is maximized.

    Args:
        x: A batch of inputs (PyTorch Tensor, TensorFlow Eager Tensor, NumPy
            Array, JAX Array, or EagerPy Tensor).
        delta: A batch of perturbation directions (same shape and type as x).
        eps: The target norm (non-negative float).
        a: The lower bound of the data domain (float).
        b: The upper bound of the data domain (float).

    Returns:
        eta: A batch of scales with the same number of dimensions as x but all
            axis == 1 except for the batch dimension.
    """
    (x, delta), restore_fn = ep.astensors_(x, delta)
    N = x.shape[0]
    assert delta.shape[0] == N
    rows = ep.arange(x, N)

    delta2 = delta.square().reshape((N, -1))
    space = ep.where(delta >= 0, b - x, x - a).reshape((N, -1))
    f2 = space.square() / ep.maximum(delta2, 1e-20)
    ks = ep.argsort(f2, axis=-1)
    f2_sorted = f2[rows[:, ep.newaxis], ks]
    m = ep.cumsum(delta2[rows[:, ep.newaxis],
                         ks.flip(axis=1)], axis=-1).flip(axis=1)
    dx = f2_sorted[:, 1:] - f2_sorted[:, :-1]
    dx = ep.concatenate((f2_sorted[:, :1], dx), axis=-1)
    dy = m * dx
    y = ep.cumsum(dy, axis=-1)
    c = y >= eps**2

    # work-around to get first nonzero element in each row
    f = ep.arange(x, c.shape[-1], 0, -1)
    j = ep.argmax(c.astype(f.dtype) * f, axis=-1)

    eta2 = f2_sorted[rows, j] - (y[rows, j] - eps**2) / m[rows, j]
    # it can happen that for certain rows even the largest j is not large enough
    # (i.e. c[:, -1] is False), then we will just use it (without any correction) as it's
    # the best we can do (this should also be the only cases where m[j] can be
    # 0 and they are thus not a problem)
    eta2 = ep.where(c[:, -1], eta2, f2_sorted[:, -1])
    eta = ep.sqrt(eta2)
    eta = eta.reshape((-1, ) + (1, ) * (x.ndim - 1))

    # xp = ep.clip(x + eta * delta, a, b)
    # l2 = (xp - x).reshape((N, -1)).square().sum(axis=-1).sqrt()
    return restore_fn(eta)
コード例 #2
0
def project_onto_l1_ball(x: ep.Tensor, eps: ep.Tensor) -> ep.Tensor:
    """Computes Euclidean projection onto the L1 ball for a batch. [#Duchi08]_

    Adapted from the pytorch version by Tony Duan:
    https://gist.github.com/tonyduan/1329998205d88c566588e57e3e2c0c55

    Args:
        x: Batch of arbitrary-size tensors to project, possibly on GPU
        eps: radius of l-1 ball to project onto

    References:
      ..[#Duchi08] Efficient Projections onto the l1-Ball for Learning in High Dimensions
         John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra.
         International Conference on Machine Learning (ICML 2008)
    """
    original_shape = x.shape
    x = flatten(x)
    mask = (ep.norms.l1(x, axis=1) <= eps).astype(x.dtype).expand_dims(1)
    mu = ep.flip(ep.sort(ep.abs(x)), axis=-1).astype(x.dtype)
    cumsum = ep.cumsum(mu, axis=-1)
    arange = ep.arange(x, 1, x.shape[1] + 1).astype(x.dtype)
    rho = (ep.max(
        ((mu * arange >
          (cumsum - eps.expand_dims(1)))).astype(x.dtype) * arange,
        axis=-1,
    ) - 1)
    # samples already under norm will have to select
    rho = ep.maximum(rho, 0)
    theta = (cumsum[ep.arange(x, x.shape[0]),
                    rho.astype(ep.arange(x, 1).dtype)] - eps) / (rho + 1.0)
    proj = (ep.abs(x) - theta.expand_dims(1)).clip(min_=0, max_=ep.inf)
    x = mask * x + (1 - mask) * proj * ep.sign(x)
    return x.reshape(original_shape)
コード例 #3
0
def project_onto_l1_ball(x: ep.Tensor, eps: ep.Tensor):
    """
    Compute Euclidean projection onto the L1 ball for a batch.

      min ||x - u||_2 s.t. ||u||_1 <= eps

    Inspired by the corresponding numpy version by Adrien Gaidon.
    Adapted from the pytorch version by Tony Duan: https://gist.github.com/tonyduan/1329998205d88c566588e57e3e2c0c55

    Parameters
    ----------
    x: (batch_size, *) torch array
      batch of arbitrary-size tensors to project, possibly on GPU

    eps: float
      radius of l-1 ball to project onto

    Returns
    -------
    u: (batch_size, *) torch array
      batch of projected tensors, reshaped to match the original

    Notes
    -----
    The complexity of this algorithm is in O(dlogd) as it involves sorting x.

    References
    ----------
    [1] Efficient Projections onto the l1-Ball for Learning in High Dimensions
        John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra.
        International Conference on Machine Learning (ICML 2008)
    """
    original_shape = x.shape
    x = flatten(x)
    mask = (ep.norms.l1(x, axis=1) < eps).astype(x.dtype).expand_dims(1)
    mu = ep.flip(ep.sort(ep.abs(x)), axis=-1)
    cumsum = ep.cumsum(mu, axis=-1)
    arange = ep.arange(x, 1, x.shape[1] + 1)
    rho = ep.max(
        (mu * arange > (cumsum - eps.expand_dims(1))) * arange, axis=-1) - 1
    theta = (cumsum[ep.arange(x, x.shape[0]), rho] - eps) / (rho + 1.0)
    proj = (ep.abs(x) - theta.expand_dims(1)).clip(min_=0, max_=ep.inf)
    x = mask * x + (1 - mask) * proj * ep.sign(x)
    return x.reshape(original_shape)
コード例 #4
0
def test_cumsum_axis(t: Tensor) -> Tensor:
    return ep.cumsum(t, axis=0)
コード例 #5
0
def test_cumsum(t: Tensor) -> Tensor:
    return ep.cumsum(t)