コード例 #1
0
ファイル: gui.py プロジェクト: permikomnaskaltara/CVAC
 def verifyProxies(self, proxies):
     ''' Take as input dictionary of {name:proxystring} and verify that
         we can communicate with the server (by getting the detector or trainer).
         Return a dictionary with 'detector running' or 'trainer running' if running 
         and 'configured' if not. Also print now so with long config files user
         sees output.
     '''
     res = {}
     for key, value in proxies.iteritems():
         # add short timeout
         value = value + ' -t 100'
         try:
             detector = easy.getDetector(value)
             res[key] = 'detector running'
             print("{0} {1}".format(key, res[key]))
             continue
         except:
             pass
         try:
             trainer = easy.getTrainer(value)
             res[key] = 'trainer running'
             print("{0} {1}".format(key, res[key]))
             continue
         except:
             pass
         try:
             trainer = easy.getFileServer(value)
             res[key] = 'FileServer running'
             print("{0} {1}".format(key, res[key]))
             continue
         except:
             pass
         try:
             trainer = easy.getCorpusServer(value)
             res[key] = 'Corpus running'
             print("{0} {1}".format(key, res[key]))
             continue
         except:
             pass
         res[key] = 'not running'
         print("{0} {1}".format(key, res[key]))
     return res
コード例 #2
0
ファイル: bowDemo_ROC.py プロジェクト: AlgorithemJourney/CVAC

doWithNegativeSample = True

if doWithNegativeSample:
    ###############################################################
    # With background data
    '''
    Execute jousting for generating ROC points
    '''
    contenders = []
    for nWord in list_nWord:
        c1 = evaluate.Contender("bowROC_binary_"+str(nWord))
        c1.trainerString = strTrainer
        c1.detectorString = strDetector
        trainer = easy.getTrainer(c1.trainerString)
        trainerProps = easy.getTrainerProperties(trainer)    
        trainerProps.props["NumWords"] = str(nWord)
        c1.trainerProps = trainerProps
        c1.foundMap = {'1':easy.getPurpose('pos'), '0':easy.getPurpose('neg')}
        contenders.append(c1)
        
    sortedperfdata, perfdata = evaluate.joust( contenders, runset, folds=3 )
    easy.showROCPlot(perfdata)
    '''
    Extract only optimal ROC points
    '''
    rocData_full,optimalIndices = easy.discardSuboptimal(perfdata)
    #rocData_full,optimalIndices = easy.discardSuboptimal(perfdata,"sboxes/BOW_Trainer_127_0_0_1")
    
    
コード例 #3
0
ファイル: evaluation.py プロジェクト: AlgorithemJourney/CVAC
Easy!  mini tutorial
Compare the performance of several trainers and/or detectors
matz 11/26/2013
'''
import easy
import easy.evaluate as ev

# perform a comparative detector evaluation including
# training of a model
# easy.CVAC_ClientVerbosity = 4
posPurpose = easy.getPurpose('pos')
negPurpose = easy.getPurpose('neg')
contenders = []

# Bag of Words
if (easy.getTrainer("BOW_Trainer")==None):
    print("BOW service(s) are insufficiently configured, skipping.")
else:
    c = ev.Contender("BOW")
    c.trainerString = "BOW_Trainer"
    c.detectorString = "BOW_Detector"
    c.foundMap = {'1':posPurpose, '0':negPurpose}
    contenders.append( c );

# Histogram of Oriented Gradients
if (easy.getTrainer("HOG_Trainer")==None):
    print("HOG service(s) are insufficiently configured, skipping.")
else:
    c = ev.Contender("HOG")
    c.trainerString = "HOG_Trainer"
    c.detectorString = "HOGTest"
コード例 #4
0
ファイル: remote_services.py プロジェクト: iqbalu/CVAC
# it is the client's responsibility to upload them if not.
# The putResult contains information about which files were actually transferred.
#
fileserver = easy.getFileServer( "FileService:default -p 10110 " + host )
putResult = easy.putAllFiles( fileserver, rs1 )
modelfile = "detectors/haarcascade_frontalface_alt.xml"
if not fileserver.exists( easy.getCvacPath(modelfile) ):
    easy.putFile( fileserver, easy.getCvacPath(modelfile) )

#
# detect remotely: note the host specification
#
print("------- Remote detection, local result display: -------")
detector = easy.getDetector( "OpenCVCascadeDetector:default -p 10102 "+host )
results = easy.detect( detector, modelfile, rs1 )
easy.printResults( results )

#
# Example 2:
# Train on a remote machine, obtain the model file, and test locally.
# Assume the files are on the remote machine, or transfer with putAllFiles.
#
trainer = easy.getTrainer( "bowTrain:default -p 10103 "+ host) # remote
trainset = easy.createRunSet( "trainImg" );
trainedModel = easy.train( trainer, trainset )
easy.getFile( fileserver, trainedModel.file )  # downloads the model from remote
print("{0}".format(trainedModel))
detector = easy.getDetector( "bowTest:default -p 10104" ) # local service
testset = easy.createRunSet("testImg","UNPURPOSED"  )
results = easy.detect( detector, trainedModel, testset )
コード例 #5
0
ファイル: evaluate.py プロジェクト: permikomnaskaltara/CVAC
 def getTrainer( self ):
     if not self.trainer:
         self.trainer = easy.getTrainer( self.trainerString )
     return self.trainer
コード例 #6
0
ファイル: training.py プロジェクト: permikomnaskaltara/CVAC
#trainset = easy.createRunSet( "trainImg" )
trainset = cvac.RunSet()
caset = easy.createRunSet("trainImg/ca")
krset = easy.createRunSet("trainImg/kr")
usset = easy.createRunSet("trainImg/us")
easy.addToRunSet(trainset, caset, cvac.Purpose(cvac.PurposeType.MULTICLASS, 0))
easy.addToRunSet(trainset, krset, cvac.Purpose(cvac.PurposeType.MULTICLASS, 1))
easy.addToRunSet(trainset, usset, cvac.Purpose(cvac.PurposeType.MULTICLASS, 2))
easy.printRunSetInfo(trainset, printLabels=True)

#
# Connect to the trainer for a Bag of Words algorithm, then
# train with the given runset
#
print("starting training, this might take a few minutes...")
trainer = easy.getTrainer("BOW_Trainer")
trainedModel = easy.train(trainer, trainset)

#
# Display information about the file in which the model is stored;
# this is generally no concern to algorithm users and only of
# interest to algorithm developers since it is algorithm-specific
#
zipfname = easy.getFSPath(trainedModel)
print("{0}".format(zipfname))
zipf = zipfile.ZipFile(zipfname)
print("Training model stored in file {0}".format(zipfname))
# print("file contents:\n{0}".format(zipf.namelist()))

#
# test the trained model on a separate set of images
コード例 #7
0
Easy!  mini tutorial
Compare the performance of several trainers and/or detectors
matz 11/26/2013
'''
import easy
import easy.evaluate as ev

# perform a comparative detector evaluation including
# training of a model
# easy.CVAC_ClientVerbosity = 4
posPurpose = easy.getPurpose('pos')
negPurpose = easy.getPurpose('neg')
contenders = []

# Bag of Words
if (easy.getTrainer("BOW_Trainer") == None):
    print("BOW service(s) are insufficiently configured, skipping.")
else:
    c = ev.Contender("BOW")
    c.trainerString = "BOW_Trainer"
    c.detectorString = "BOW_Detector"
    c.foundMap = {'1': posPurpose, '0': negPurpose}
    contenders.append(c)

# Histogram of Oriented Gradients
if (easy.getTrainer("HOG_Trainer") == None):
    print("HOG service(s) are insufficiently configured, skipping.")
else:
    c = ev.Contender("HOG")
    c.trainerString = "HOG_Trainer"
    c.detectorString = "HOGTest"
コード例 #8
0
ファイル: labelme_corpus.py プロジェクト: ericeckstrand/CVAC
# pick a subset: all license plates
license_plates = categories['license plate']
print("There are {0} license plate labels.".format( len(license_plates) ))

# another subset: all labels starting with "car"
cars = []
for key in categories.keys():
    if key.startswith("car"):
        cars.append( categories[key] )
print("There are {0} car-related labels.".format( len(cars) ))

# Note that Labels are cached in the CorpusServer, but the corpus currently
# needs to re-mirror if the CorpusServer is restarted because Labels are
# not stored to disk.  Images are stored to disk.

quit()  # done for now

# Train a detector on license plates
trainer = easy.getTrainer( "BOW_Trainer:default -p 10103 ")
trainset = easy.createRunSet( license_plates, "pos" )
easy.printRunSetInfo( trainset )
licenseplateModel = easy.train( trainer, trainset )

# test the license plate detector on the known locations of cars;
# this will only try to detect within the boundaries of cars.
testset = easy.createRunSet( cars, "unpurposed" )
detector = easy.getDetector( "BOW_Detector:default -p 10104" )
results = easy.detect( detector, licenseplateModel, testset )

printResults( results )
コード例 #9
0
#
# detect remotely: note the host specification
#
detector = easy.getDetector("OpenCVCascadeDetector:default -p 10102 " + host)
results = easy.detect(detector, modelfile, rs1)
easy.printResults(results)

#
# Example 2:
# Train on a remote machine, obtain the model file, and test locally.
# Assume the files are on the remote machine, or transfer with putAllFiles.
# If no local services are installed, this will be skipped.
#
print("------- Remote training, local detection: -------")
try:
    detector = easy.getDetector(
        "BOW_Detector:default -p 10104")  # local service
    trainer = easy.getTrainer("BOW_Trainer:default -p 10103 " + host)  # remote
    trainset = easy.createRunSet("trainImg")
    trainedModel = easy.train(trainer, trainset)
    easy.getFile(fileserver, trainedModel)  # downloads the model from remote
    print("obtained trained detector, stored in file {0}".format(
        easy.getFSPath(trainedModel)))
    testset = easy.createRunSet("testImg", "UNPURPOSED")
    results = easy.detect(detector, trainedModel, testset)
    easy.printResults(results)
except:
    print("Cannot connect to local detector.  Have you started the services?\n"\
          "This part of the demo does not work with the client-only distribution.")
コード例 #10
0
# it is the client's responsibility to upload them if not.
# The putResult contains information about which files were actually transferred.
#
fileserver = easy.getFileServer( "FileService:default -p 10110 " + host )
putResult = easy.putAllFiles( fileserver, rs1 )
modelfile = "detectors/haarcascade_frontalface_alt.xml"
if not fileserver.exists( easy.getCvacPath(modelfile) ):
    easy.putFile( fileserver, easy.getCvacPath(modelfile) )

#
# detect remotely: note the host specification
#
print("------- Remote detection, local result display: -------")
detector = easy.getDetector( "OpenCVCascadeDetector:default -p 10102 "+host )
results = easy.detect( detector, modelfile, rs1 )
easy.printResults( results )

#
# Example 2:
# Train on a remote machine, obtain the model file, and test locally.
# Assume the files are on the remote machine, or transfer with putAllFiles.
#
trainer = easy.getTrainer( "BOW_Trainer:default -p 10103 "+ host) # remote
trainset = easy.createRunSet( "trainImg" );
trainedModel = easy.train( trainer, trainset )
easy.getFile( fileserver, trainedModel )  # downloads the model from remote
print("{0}".format(trainedModel))
detector = easy.getDetector( "BOW_Detector:default -p 10104" ) # local service
testset = easy.createRunSet("testImg","UNPURPOSED"  )
results = easy.detect( detector, trainedModel, testset )
コード例 #11
0
ファイル: bootstrapping.py プロジェクト: ericeckstrand/CVAC
'''
Easy!  mini tutorial
Repeatedly train and evaluate for efficient label use; bootstrap.
matz 6/21/2013
'''

import os
import easy

#
# Create a training set from one sample each of 9 corporate logos
#
trainset1 = easy.createRunSet( "corporate_logos" )

# train, round 1
trainer = easy.getTrainer( "BOW_Trainer")
model1 = easy.train( trainer, trainset1 )

# evaluate the model on a separate test set, images and videos
# in DataDir/testdata1
testset1 = easy.createRunSet( "testImg", "UNPURPOSED" )
easy.printRunSetInfo( testset1 )
detector = easy.getDetector( "BOW_Detector" )
result1 = easy.detect( detector, model1, testset1 )
easy.printResults(result1)

# sort the images from the testdata1 folder into subfolders of
# "testresults1" corresponding to the found labels;
# if multiple labels were found per original, consider only
# the label with the highest confidence
easy.sortIntoFolders( result1, outfolder="testresults1", multi="highest")
コード例 #12
0
ファイル: labelme_corpus.py プロジェクト: iqbalu/CVAC
# pick a subset: all license plates
license_plates = categories['license plate']
print("There are {0} license plate labels.".format( len(license_plates) ))

# another subset: all labels starting with "car"
cars = []
for key in categories.keys():
    if key.startswith("car"):
        cars.append( categories[key] )
print("There are {0} car-related labels.".format( len(cars) ))

# Note that Labels are cached in the CorpusServer, but the corpus currently
# needs to re-mirror if the CorpusServer is restarted because Labels are
# not stored to disk.  Images are stored to disk.

quit()  # done for now

# Train a detector on license plates
trainer = easy.getTrainer( "bowTrain:default -p 10103 ")
trainset = easy.createRunSet( license_plates, "pos" )
easy.printRunSetInfo( trainset )
licenseplateModel = easy.train( trainer, trainset )

# test the license plate detector on the known locations of cars;
# this will only try to detect within the boundaries of cars.
testset = easy.createRunSet( cars, "unpurposed" )
detector = easy.getDetector( "bowTest:default -p 10104" )
results = easy.detect( detector, licenseplateModel, testset )

printResults( results )
コード例 #13
0
# pick a subset: all license plates
license_plates = categories['license plate']
print("There are {0} license plate labels.".format(len(license_plates)))

# another subset: all labels starting with "car"
cars = []
for key in categories.keys():
    if key.startswith("car"):
        cars.append(categories[key])
print("There are {0} car-related labels.".format(len(cars)))

# Note that Labels are cached in the CorpusServer, but the corpus currently
# needs to re-mirror if the CorpusServer is restarted because Labels are
# not stored to disk.  Images are stored to disk.

quit()  # done for now

# Train a detector on license plates
trainer = easy.getTrainer("BOW_Trainer:default -p 10103 ")
trainset = easy.createRunSet(license_plates, "pos")
easy.printRunSetInfo(trainset)
licenseplateModel = easy.train(trainer, trainset)

# test the license plate detector on the known locations of cars;
# this will only try to detect within the boundaries of cars.
testset = easy.createRunSet(cars, "unpurposed")
detector = easy.getDetector("BOW_Detector:default -p 10104")
results = easy.detect(detector, licenseplateModel, testset)

printResults(results)
コード例 #14
0
list_nWord = [5, 10, 15, 20]

doWithNegativeSample = True

if doWithNegativeSample:
    ###############################################################
    # With background data
    '''
    Execute jousting for generating ROC points
    '''
    contenders = []
    for nWord in list_nWord:
        c1 = evaluate.Contender("bowROC_binary_" + str(nWord))
        c1.trainerString = strTrainer
        c1.detectorString = strDetector
        trainer = easy.getTrainer(c1.trainerString)
        trainerProps = easy.getTrainerProperties(trainer)
        trainerProps.props["NumWords"] = str(nWord)
        c1.trainerProps = trainerProps
        c1.foundMap = {
            '1': easy.getPurpose('pos'),
            '0': easy.getPurpose('neg')
        }
        contenders.append(c1)

    sortedperfdata, perfdata = evaluate.joust(contenders, runset, folds=3)
    easy.showROCPlot(perfdata)
    '''
    Extract only optimal ROC points
    '''
    rocData_full, optimalIndices = easy.discardSuboptimal(perfdata)