コード例 #1
0
    def _defaultData(self):
        x_min = self._defaultSimulationParameters()['x_min']
        x_max = self._defaultSimulationParameters()['x_max']
        x_step = self._defaultSimulationParameters()['x_step']
        num_points = int((x_max - x_min) / x_step + 1)
        x_data = np.linspace(x_min, x_max, num_points)

        data = DataStore()

        data.append(
            DataSet1D(name='PND',
                      x=x_data,
                      y=np.zeros_like(x_data),
                      x_label='2theta (deg)',
                      y_label='Intensity',
                      data_type='experiment'))
        data.append(
            DataSet1D(name='{:s} engine'.format(self._interface_name),
                      x=x_data,
                      y=np.zeros_like(x_data),
                      x_label='2theta (deg)',
                      y_label='Intensity',
                      data_type='simulation'))
        data.append(
            DataSet1D(name='Difference',
                      x=x_data,
                      y=np.zeros_like(x_data),
                      x_label='2theta (deg)',
                      y_label='Difference',
                      data_type='simulation'))
        return data
コード例 #2
0
    def __init__(self,
                 name: str = 'Series',
                 x: Union[np.ndarray, list] = None,
                 y: Union[np.ndarray, list] = None,
                 e: Union[np.ndarray, list] = None,
                 data_type: str = 'simulation',
                 x_label: str = 'x',
                 y_label: str = 'y'):

        if not isinstance(data_type, str):
            raise AttributeError
        self._datatype = None
        self.data_type = data_type

        if x is None:
            x = np.array([])
        if y is None:
            y = np.array([])
        if e is None:
            e = np.zeros_like(x)

        self.name = name
        if not isinstance(x, np.ndarray):
            x = np.array(x)
        if not isinstance(y, np.ndarray):
            y = np.array(y)

        self.x = x
        self.y = y
        self.e = e

        self.x_label = x_label
        self.y_label = y_label

        self._color = None
コード例 #3
0
 def calculate(self, x_array: np.ndarray) -> np.ndarray:
     """
     For a given x calculate the corresponding y
     :param x_array: array of data points to be calculated
     :type x_array: np.ndarray
     :return: points calculated at `x`
     :rtype: np.ndarray
     """
     res = np.zeros_like(x_array)
     self.additional_data["ivar"] = res
     if self.type == "powder1DCW":
         return self.powder_1d_calculate(x_array)
     if self.type == "powder1DTOF":
         return self.powder_1d_tof_calculate(x_array)
     return res
コード例 #4
0
    def calculate(self, x_array: np.ndarray) -> np.ndarray:
        """
        Generate a background from the stored background points.

        :param x_array: Points for which the background should be calculated.
        :type x_array: np.ndarray
        :return: Background points at the supplied x-positions.
        :rtype: np.ndarray
        """

        # shape_x = x_array.shape
        # reduced_x = x_array.flat

        # y = np.zeros_like(reduced_x)

        # low_x = x_array.flat[0] - 1e-10
        x_points = self.x_sorted_points
        if not len(x_points):
            return np.zeros_like(x_array)
        # low_y = 0
        y_points = self.y_sorted_points
        return np.interp(x_array, x_points, y_points)
コード例 #5
0
    def calculate(self, x_array: np.ndarray) -> np.ndarray:
        """
        Generate a background from the stored background factors.

        :param x_array: Points for which the background should be calculated.
        :type x_array: np.ndarray
        :return: Background points at the supplied x-positions.
        :rtype: np.ndarray
        """

        shape_x = x_array.shape
        reduced_x = x_array.flat

        y = np.zeros_like(reduced_x)

        powers = self.sorted_powers
        amps = self.sorted_amplitudes

        for power, amp in zip(powers, amps):
            y += amp * x_array**power

        return y.reshape(shape_x)
コード例 #6
0
    def do_calc_setup(self, scale, this_x_array):
        if len(self.pattern.backgrounds) == 0:
            bg = np.zeros_like(this_x_array)
        else:
            bg = self.pattern.backgrounds[0].calculate(this_x_array)

        num_crys = len(self.current_crystal.keys())

        if num_crys == 0:
            return bg

        crystals = [self.storage[key] for key in self.current_crystal.keys()]
        phase_scales = [
            self.storage[str(key) + "_scale"]
            for key in self.current_crystal.keys()
        ]
        phase_lists = []
        profiles = []
        peak_dat = []
        for crystal in crystals:
            phasesL = cryspy.PhaseL()
            idx = [
                idx for idx, item in enumerate(self.phases.items)
                if item.label == crystal.data_name
            ][0]
            phasesL.items.append(self.phases.items[idx])
            phase_lists.append(phasesL)
            profile, peak = _do_run(self.model, self.polarized, this_x_array,
                                    crystal, phasesL)
            profiles.append(profile)
            peak_dat.append(peak)
        # pool = mp.ProcessPool(num_crys)
        # print("\n\nPOOL = " + str(pool))
        # result = pool.amap(functools.partial(_do_run, self.model, self.polarized, this_x_array), crystals,
        # phase_lists)
        # while not result.ready():
        #     time.sleep(0.01)
        # obtained = result.get()
        # profiles, peak_dat = zip(*obtained)
        # else:
        #     raise ArithmeticError

        # Do this for now
        x_str = "ttheta"
        if self.type == "powder1DTOF":
            x_str = "time"
        if self.polarized:
            # TODO *REPLACE PLACEHOLDER FN*
            dependents, additional_data = self.polarized_update(
                lambda up, down: up + down,
                crystals,
                profiles,
                peak_dat,
                phase_scales,
                x_str,
            )
        else:
            dependents, additional_data = self.nonPolarized_update(
                crystals, profiles, peak_dat, phase_scales, x_str)
        self.additional_data["phases"].update(additional_data)
        self.additional_data["global_scale"] = scale
        self.additional_data["background"] = bg
        self.additional_data["ivar_run"] = this_x_array
        self.additional_data["phase_names"] = list(additional_data.keys())
        self.additional_data["type"] = self.type

        # just the sum of all phases
        dependent_output = scale * np.sum(dependents, axis=0) + bg

        scaled_dependents = [scale * dep for dep in dependents]
        self.additional_data["components"] = scaled_dependents
        self.additional_data["components"] = scaled_dependents

        if borg.debug:
            print(f"y_calc: {dependent_output}")
        return (np.sum(
            [s["profile"] for s in self.additional_data["phases"].values()],
            axis=0) + self.additional_data["background"])
コード例 #7
0
    def calculate(self, x_array: np.ndarray) -> np.ndarray:
        """
        For a given x calculate the corresponding y
        :param x_array: array of data points to be calculated
        :type x_array: np.ndarray
        :return: points calculated at `x`
        :rtype: np.ndarray
        """
        if self.filename is None:
            raise AttributeError

        if self.pattern is None:
            scale = 1.0
            offset = 0
        else:
            scale = self.pattern.scale.raw_value
            offset = self.pattern.zero_shift.raw_value

        this_x_array = x_array + offset

        # Experiment/Instrument/Simulation parameters
        x_min = this_x_array[0]
        x_max = this_x_array[-1]
        num_points = np.prod(x_array.shape)
        x_step = (x_max - x_min) / (num_points - 1)

        if len(self.pattern.backgrounds) == 0:
            bg = np.zeros_like(this_x_array)
        else:
            bg = self.pattern.backgrounds[0].calculate(this_x_array)

        dependents = []

        # Sample parameters
        # We assume that the phases items has the same indexing as the knownphases item
        cifs = self.grab_cifs()
        if len(cifs) == 0:
            raise ValueError("No phases found for calculation")

        for idx, file in enumerate(cifs):
            cif_file = CFML_api.CIFFile(file)
            cell = cif_file.cell
            space_group = cif_file.space_group
            atom_list = cif_file.atom_list
            job_info = cif_file.job_info

            job_info.range_2theta = (x_min, x_max)
            job_info.theta_step = x_step
            job_info.u_resolution = self.conditions["u_resolution"]
            job_info.v_resolution = self.conditions["v_resolution"]
            job_info.w_resolution = self.conditions["w_resolution"]
            job_info.x_resolution = self.conditions["x_resolution"]
            job_info.y_resolution = self.conditions["y_resolution"]
            job_info.lambdas = (self.conditions["lamb"],
                                self.conditions["lamb"])
            job_info.bkg = 0.0

            # Calculations
            try:
                reflection_list = CFML_api.ReflectionList(
                    cell, space_group, True, job_info)

                reflection_list.compute_structure_factors(
                    space_group, atom_list, job_info)

                diffraction_pattern = CFML_api.DiffractionPattern(
                    job_info, reflection_list, cell.reciprocal_cell_vol)
            except Exception as e:
                for cif in cifs:
                    os.remove(cif)
                raise ArithmeticError

            item = list(self.known_phases.items())[idx]
            key = list(self.known_phases.keys())[idx]
            phase_scale = self.getPhaseScale(key)

            dependent, additional_data = self.nonPolarized_update(
                item,
                diffraction_pattern,
                reflection_list,
                job_info,
                scales=phase_scale)
            dependents.append(dependent)
            self.additional_data["phases"].update(additional_data)
        for cif in cifs:
            os.remove(cif)
        self.additional_data["global_scale"] = scale
        self.additional_data["background"] = bg
        self.additional_data["ivar_run"] = this_x_array
        self.additional_data["ivar"] = x_array
        self.additional_data["components"] = [
            scale * dep + bg for dep in dependents
        ]
        self.additional_data["phase_names"] = list(self.known_phases.items())
        self.additional_data["type"] = "powder1DCW"

        dependent_output = scale * np.sum(dependents, axis=0) + bg

        if borg.debug:
            print(f"y_calc: {dependent_output}")
        return (np.sum(
            [s["profile"] for s in self.additional_data["phases"].values()],
            axis=0) + self.additional_data["background"])
コード例 #8
0
    def calculate(self, x_array: np.ndarray) -> np.ndarray:
        self.create_temp_prm()

        if self.pattern is None:
            scale = 1.0
            offset = 0
        else:
            scale = self.pattern.scale.raw_value / 1000.0
            offset = self.pattern.zero_shift.raw_value

        this_x_array = x_array + offset

        gpx = G2sc.G2Project(newgpx=os.path.join(
            self.prm_dir_path, 'easydiffraction_temp.gpx'))  # create a project

        # step 1, setup: add a phase to the project
        cif_file = self.filename
        phase_name = 'Phase'
        phase_index = 0
        phase0 = gpx.add_phase(cif_file, phasename=phase_name, fmthint='CIF')

        # step 2, setup: add a simulated histogram and link it to the previous phase(s)
        x_min = this_x_array[0]
        x_max = this_x_array[-1]
        n_points = np.prod(x_array.shape)
        x_step = (x_max - x_min) / (n_points - 1)
        histogram0 = gpx.add_simulated_powder_histogram(
            f"{phase_name} simulation",
            self.prm_file_path,
            x_min,
            x_max,
            Tstep=x_step,
            phases=gpx.phases())

        # Set parameters
        val1 = 10000.0  #1000000.0
        val2 = None
        LGmix = 0.0  # 1.0 -> 0.0: NO VISIBLE INFLUENCE...
        phase0.setSampleProfile(phase_index,
                                'size',
                                'isotropic',
                                val1,
                                val2=val2,
                                LGmix=LGmix)
        #print("- size", phase0.data['Histograms'][f'PWDR {phase_name} simulation']['Size'])

        u = self.conditions["u_resolution"] * 1850  # ~ CrysPy/CrysFML
        v = self.conditions["v_resolution"] * 1850  # ~ CrysPy/CrysFML
        w = self.conditions["w_resolution"] * 1850  # ~ CrysPy/CrysFML
        x = self.conditions["x_resolution"] * 16  # ~ CrysPy/CrysFML
        y = self.conditions["y_resolution"] - 6  # y - 6 ~ 0 in CrysPy/CrysFML
        gpx.data[f'PWDR {phase_name} simulation']['Instrument Parameters'][0][
            'U'] = [u, u, 0]
        gpx.data[f'PWDR {phase_name} simulation']['Instrument Parameters'][0][
            'V'] = [v, v, 0]
        gpx.data[f'PWDR {phase_name} simulation']['Instrument Parameters'][0][
            'W'] = [w, w, 0]
        gpx.data[f'PWDR {phase_name} simulation']['Instrument Parameters'][0][
            'X'] = [x, x, 0]
        gpx.data[f'PWDR {phase_name} simulation']['Instrument Parameters'][0][
            'Y'] = [y, y, 0]

        wl = self.conditions["wavelength"]
        gpx.data[f'PWDR {phase_name} simulation']['Instrument Parameters'][0][
            'Lam'] = [wl, wl, 0]

        # Step 3: Set the scale factor to adjust the y scale
        #histogram0.SampleParameters['Scale'][0] = 1000000.

        # step 4, compute: turn off parameter optimization and calculate pattern
        gpx.data['Controls']['data']['max cyc'] = 0  # refinement not needed

        try:
            gpx.do_refinements(refinements=[{}], makeBack=[])
            # step 5, retrieve results & plot
            ycalc = gpx.histogram(0).getdata('ycalc')
        except:
            raise ArithmeticError
        finally:
            # Clean up
            for p in pathlib.Path(os.path.dirname(
                    self.filename)).glob("easydiffraction_temp*"):
                if os.path.basename(p) != "easydiffraction_temp.cif":
                    p.unlink()

        self.hkl_dict = {
            'ttheta':
            gpx.data[f'PWDR {phase_name} simulation']['Reflection Lists']
            [phase_name]['RefList'][:, 5],
            'h':
            gpx.data[f'PWDR {phase_name} simulation']['Reflection Lists']
            [phase_name]['RefList'][:, 0],
            'k':
            gpx.data[f'PWDR {phase_name} simulation']['Reflection Lists']
            [phase_name]['RefList'][:, 1],
            'l':
            gpx.data[f'PWDR {phase_name} simulation']['Reflection Lists']
            [phase_name]['RefList'][:, 2]
        }

        if len(self.pattern.backgrounds) == 0:
            bg = np.zeros_like(this_x_array)
        else:
            bg = self.pattern.backgrounds[0].calculate(this_x_array)

        res = scale * ycalc + bg

        np.set_printoptions(precision=3)
        if borg.debug:
            print(f"y_calc: {res}")

        return res