コード例 #1
0
    def __init__(self, sess, env, network, log_dir, goal_checker=None):
        self.sess = sess
        self.env = env
        self.network = network
        self.goal_checker = goal_checker

        if network.summaries_op is not None:
            self.summary_writer = tf.summary.FileWriter(log_dir, flush_secs=1)
            self.logger = easy_tf_log.Logger()
            self.logger.set_writer(self.summary_writer.event_writer)
        else:
            self.summary_writer = None
            self.logger = None

        self.updates = 0
        self.last_state = self.env.reset()
        self.goal_checker.reset()

        self.last_goal_inputs = self.last_state[1]

        if len(self.last_goal_inputs) % 3 != 0:
            raise Exception(
                'Proprioceptions must be multiples of three. Current size of Proprioceptions: {0}'
                .format(len(self.last_goal_inputs)))

        self.goals = self.make_goals(self.last_goal_inputs)

        self.last_state = self.last_state[0]

        self.episode_values = []
コード例 #2
0
ファイル: worker.py プロジェクト: gilcoder/AI4U
    def __init__(self, sess, env, network, log_dir):
        self.sess = sess
        self.env = env
        self.network = network 
        self.bank_ops = []
        self.banks_template = OrderedDict()
        for key in network.memory_bank:
            self.banks_template[key] = []
            b = network.memory_bank[key]
            self.bank_ops += b.update

        if network.summaries_op is not None:
            self.summary_writer = tf.summary.FileWriter(log_dir, flush_secs=1)
            self.logger = easy_tf_log.Logger()
            self.logger.set_writer(self.summary_writer.event_writer)
        else:
            self.summary_writer = None
            self.logger = None

        self.updates = 0
        self.last_state = self.env.reset()
        if type(self.last_state) is tuple:
            self.last_extra_inputs = self.last_state[1]
            self.last_state = self.last_state[0]
        else:
            self.last_extra_inputs = None

        self.episode_values = []
コード例 #3
0
    def __init__(self, sess, env, network, log_dir, goal_checker=None):
        if goal_checker is None:
            raise Exception("goal_checker must be a class with __call__(goal, pos, min, max, default_value) method implemented!!!")

        self.sess = sess
        self.env = env
        self.network = network
        self.goal_checker = goal_checker
        self.current_goal = 0

        if network.summaries_op is not None:
            self.summary_writer = tf.summary.FileWriter(log_dir, flush_secs=1)
            self.logger = easy_tf_log.Logger()
            self.logger.set_writer(self.summary_writer.event_writer)
        else:
            self.summary_writer = None
            self.logger = None

        self.updates = 0
        self.last_state = self.env.reset()
        self.goal_checker.reset()

        self.last_goal_inputs = self.last_state[1]

        if len(self.last_goal_inputs) % 3 != 0:
            raise Exception('Proprioceptions must be multiples of three. Current size of Proprioceptions: {0}'.format(len(self.last_goal_inputs)))

        self.goals = self.make_goals(self.last_goal_inputs)
        self.current_goal = np.random.choice(len(self.goals))

        self.last_state = self.last_state[0]

        self.episode_values = []
コード例 #4
0
    def init_logging(self):
        create_dirs()
        # $ tensorboard --logdir=logs --port=6006
        # then go to http://acai.local:6006/#scalars&run=.
        self.rewards_dir_path = os.path.join(curr_dir_path, 'logs', 'rewards')
        self.log_dir_path = os.path.join(curr_dir_path, 'logs', 'train')
        self.save_historical_logs()

        #using easy_tf_log
        self.logger = easy_tf_log.Logger()
        self.logger.set_log_dir(self.rewards_dir_path)

        #using std tensorboard method
        self.log_every_n = 10
        self.train_writer = tf.summary.FileWriter(
            "logs/train/", flush_secs=5)  #self.sess.graph)
コード例 #5
0
ファイル: worker.py プロジェクト: gilzamir/pacman
    def __init__(self, sess, env, network, log_dir):
        self.sess = sess
        self.env = env
        self.network = network

        if network.summaries_op is not None:
            self.summary_writer = tf.summary.FileWriter(log_dir, flush_secs=1)
            self.logger = easy_tf_log.Logger()
            self.logger.set_writer(self.summary_writer.event_writer)
        else:
            self.summary_writer = None
            self.logger = None

        self.updates = 0
        self.last_state = self.env.reset()
        self.episode_values = []
コード例 #6
0
    def __init__(self, env, log_prefix="", log_dir=None):
        Wrapper.__init__(self, env)

        if log_prefix:
            self.log_prefix = log_prefix + ": "
        else:
            self.log_prefix = ""

        if log_dir is not None:
            self.logger = easy_tf_log.Logger()
            self.logger.set_log_dir(log_dir)
        else:
            self.logger = None

        self.episode_rewards = None
        self.episode_length_steps = None
        self.episode_n = -1
        self.episode_done = None
コード例 #7
0
ファイル: tests.py プロジェクト: XrosLiang/easy-tf-log
    def test_measure_rate(self):
        with tempfile.TemporaryDirectory() as temp_dir:
            logger = easy_tf_log.Logger(log_dir=temp_dir)

            logger.measure_rate('foo', 0)
            time.sleep(1)
            logger.measure_rate('foo', 10)
            time.sleep(1)
            logger.measure_rate('foo', 25)

            event_filename = list(os.scandir(temp_dir))[0].path
            event_n = 0
            rates = []
            for event in tf.train.summary_iterator(event_filename):
                if event_n == 0:  # metadata
                    event_n += 1
                    continue
                rates.append(event.summary.value[0].simple_value)
                event_n += 1
            np.testing.assert_array_almost_equal(rates, [10., 15.], decimal=1)
コード例 #8
0
ファイル: gen_logs.py プロジェクト: rhoposit/tbplot
import time

import easy_tf_log

for i in range(3):
    logger = easy_tf_log.Logger()
    logger.set_log_dir(f'run-seed{i}')
    logger.logkv('foo', 0)
    time.sleep(1.0)
    logger.logkv('foo', 1 + i / 3)


コード例 #9
0
# Logging using the global logger

# Will log to automatically-created 'logs' directory
for i in range(10):
    easy_tf_log.tflog('foo', i)
for j in range(10, 20):
    easy_tf_log.tflog('bar', j)

easy_tf_log.set_dir('logs2')

for k in range(20, 30):
    easy_tf_log.tflog('baz', k)
for l in range(5):
    easy_tf_log.tflog('qux', l, step=(10 * l))

# Logging using a Logger object

logger = easy_tf_log.Logger(log_dir='logs3')

for i in range(10):
    logger.log_key_value('quux', i)

logger.log_list_stats('quuz', [1, 2, 3, 4, 5])

logger.measure_rate('corge', 10)
time.sleep(1)
logger.measure_rate('corge', 20)  # Logged rate: (20 - 10) / 1
time.sleep(2)
logger.measure_rate('corge', 30)  # Logged rate: (30 - 20) / 2