def call(self, inputs, mask=None, **kwargs): if self.return_masked: return [ inputs[0], K.cast(self.compute_mask(inputs, mask)[0], K.floatx()) ] return inputs[0]
def call(self, inputs, **kwargs): inputs, tasks = inputs if K.dtype(tasks) != 'int32': tasks = K.cast(tasks, 'int32') task_embed = K.gather(self.embeddings, tasks) if self.mask_zero: task_embed = task_embed * K.expand_dims( K.cast(K.not_equal(tasks, 0), K.floatx()), axis=-1) if K.backend() == 'theano': task_embed = K.tile(task_embed, (1, K.shape(inputs)[1], 1)) return inputs + task_embed
def call(self, inputs, mask=None): if mask is not None: mask = K.cast(mask, K.floatx()) inputs -= K.expand_dims((1.0 - mask) * 1e6, axis=-1) return K.max(inputs, axis=-2)
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] t = K.cast(self.iterations, K.floatx()) + 1 lr = K.switch( t <= self.warmup_steps, self.lr * (t / self.warmup_steps), self.min_lr + (self.lr - self.min_lr) * (1.0 - K.minimum(t, self.decay_steps) / self.decay_steps), ) lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='m_{}'.format(i)) for i, p in enumerate(params) ] vs = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='v_{}'.format(i)) for i, p in enumerate(params) ] if self.amsgrad: vhats = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='vh_{}'.format(i)) for i, p in enumerate(params) ] else: vhats = [ K.zeros(1, dtype=K.dtype(p), name='vh_{}'.format(i)) for i, p in enumerate(params) ] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = m_t / (K.sqrt(v_t) + self.epsilon) if self.initial_weight_decay > 0.0: if self.weight_decay_pattern is None: p_t += self.weight_decay * p else: for pattern in self.weight_decay_pattern: if pattern in p.name: p_t += self.weight_decay * p break p_t = p - lr_t * p_t self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def call(self, inputs, mask=None): if mask is not None: mask = K.cast(mask, K.floatx()) inputs *= K.expand_dims(mask, axis=-1) return super(MaskedConv1D, self).call(inputs)